Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

I need to create randomly several {1,2,3}-sequences of length 15. I execute:

> with(RandomTools):

> w:=Generate(list(posint(range = 3), 15)):
 

The problem is that when I close the program and then open and run it again, it always produces the same sequences. 

What should I do in order to make it work really randomly? That is, to start at a "random" sequence as well?

Thanks!

Can any one help me correct my doc wherein I want to record 5 minutes with microphone and play it for the same duration through my speaker with a click of button component. I find problem in file path specification.This document in my PC is  in E:\A_PhD2017\MAPLEPhDFiles\RequestCorrection_Microphone_Speaker_from_primetime.mw

Components added are only three: microphone0, Speaker0 and Button0

``

``

``

Edit*Data*Available*Action*contains*the*following*commands

rate := DocumentTools:-GetProperty("Microphone0", samplerate); 1; R := DocumentTools:-GetProperty("Microphone0", value)

Array(%id = 18446745571883247742)

(1)

Edit Click Action for Button contains the following commands.

R := DocumentTools:-GetProperty("Microphone0", value); 1; srate := DocumentTools:-GetProperty("Microphone0", samplerate); 1; DocumentTools:-SetProperty("Speaker0", samplerate, srate); 1; DocumentTools:-SetProperty("Speaker0", value, R)

16000

(2)

NULL

No errors displayed for both the above doc tools use``

Also nonstop continuous evaluation takes place! Where is the loop formation if at all there is any?

Thanks for answering

Ramakrishnan V


 

Download RequestCorrection_Microphone_Speaker_from_primetime.mwRequestCorrection_Microphone_Speaker_from_primetime.mw

PhDFiles\....mw

Hello,

I'm trying to write and simplify expressions involving partial derivatives of an arbitrary function, say f(x,y).

Specifically, I would like diff(f(t,y),t) to evaluate to D[1](f)(t,y), instead of 
diff(f(t,y),t)

And eval(diff(f(x,y),x),x=t) gives the same result. 

Interestingly, diff(f(2*t,y),t) does evaluate to 2*D[1](f)(2*t,y), as expected.

I could get some results by using a custom differentiation function
 

`diff/f` := proc(x,y,v) 
    if v = x then return D[1](f)(v,y):
    elif v = y then return D[2](f)(x,v):
    else return 0: # is there a fallback I can use without risking infinite recursion?
    fi:
end proc:

and it works for the simple case, but now diff(f(2*t,y),t) does not work.

All this makes me feel that there must be a way to get what I want by default, but I can't figure it out.

Is there? Thank you in advance!

Hi Mapleprimes people and robots,


My question is regarding a recursive sequence.  It can be defined non-recursively as - 


a(r) :=  0.8*3^r + 0.2*(-2)^r.

The first few terms are - 

1,2,8,20,68,188, and so on.

Here is my Maple Worksheet.
recursive_sequence_A133467.mw      recursive_sequence_A133467.pdf

I want some Maple code that will produce 30 terms of this sequence.  It is defined as

s[1]:=1:
s[2]:=2:

for n>2 we let s[n] = s[n-1] + 6*s[n-2].

Let me know if my question does not make sense.

Regards,
Matt

 

Hello,
I have a second problem which is related to converting horizontal axis to degrees ( or in terms of Pi :  0 - Pi/2 ).

Thank you for your helps

Bengu


restart;
s1 := (1/3*(4*(1.66+10^(-1))^2-x^2))^(3/2)/(x^2*(1+.66+10^(-1)))-sin(2*a);
s2 := (1/3*(4*(1.66+10^(-2))^2-x^2))^(3/2)/(x^2*(1+.66+10^(-2)))-sin(2*a);
s3 := (1/3*(4*(1.66+10^(-3))^2-x^2))^(3/2)/(x^2*(1+.66+10^(-3)))-sin(2*a);
k1 := series(s1, x);
                    (-2)                                 
       4.769067180 x     + (-0.5773502688 - 1. sin(2. a))

                           2    / 4\
          + 0.01164914507 x  + O\x /
k2 := series(s2, x);
                    (-2)                                 
       4.293792441 x     + (-0.5773502692 - 1. sin(2. a))

                           2    / 4\
          + 0.01293857500 x  + O\x /
k3 := series(s3, x);
                    (-2)                                 
       4.247636750 x     + (-0.5773502693 - 1. sin(2. a))

                           2    / 4\
          + 0.01307916821 x  + O\x /
p1 := convert(k1, polynom);
  4.769067180                                                2
  ----------- - 0.5773502688 - 1. sin(2. a) + 0.01164914507 x 
       2                                                      
      x                                                       
p2 := convert(k2, polynom);
  4.293792441                                                2
  ----------- - 0.5773502692 - 1. sin(2. a) + 0.01293857500 x 
       2                                                      
      x                                                       
p3 := convert(k3, polynom);
  4.247636750                                                2
  ----------- - 0.5773502693 - 1. sin(2. a) + 0.01307916821 x 
       2                                                      
      x                                                       
with(plots, implicitplot);
implicitplot([p1, p2, p3], a = 0 .. (1/2)*Pi, x = 0 .. 3, style = point, symbol = [box, cross, circle], labeldirections = [horizontal, vertical], labels = ["θ (radians)", "Switching  field (T)"], color = [blue, red, black], symbolsize = 13);


Hello,

How can I fit my equation with the experimental data given below? 

My equation is:  y = A*y^3+B*x ,  where x is the independent variable,  and y is the dependent variable. 
Also how can I determine A and B constants? 
Thanks

Bengu


restart;
Xvals := [.53993447, .5599647, .57995479, .59995566, .61996118, .63994512, .65994136, .6799731, .69996782, .71997949, .73997422, .75995044, .77994976, .7999707, .81995146, .83995244, .85996729, .87994951, .8999458];
Yvals := [-.79625455, -.75585259, -.67800183, -.47955884, -.25493698, -0.65747361e-1, .10114507, .26994542, .41484068, .50621122, .60363251, .65510417, .7251356, .75804148, .76002419, .8030069, .82774732, .8429559, .8692888];
with(Statistics);
points := ScatterPlot(Xvals, Yvals);
PLOT(CURVES(Matrix(19, 2, {(1, 1) = .53993447, (1, 2) = 

   -.79625455, (2, 1) = .5599647, (2, 2) = -.75585259, (3, 1) = 

   .57995479, (3, 2) = -.67800183, (4, 1) = .59995566, (4, 2) = 

   -.47955884, (5, 1) = .61996118, (5, 2) = -.25493698, (6, 1) 

   = .63994512, (6, 2) = -0.65747361e-1, (7, 1) = .65994136, 

   (7, 2) = .10114507, (8, 1) = .6799731, (8, 2) = .26994542, 

   (9, 1) = .69996782, (9, 2) = .41484068, (10, 1) = .71997949, 

   (10, 2) = .50621122, (11, 1) = .73997422, (11, 2) = 

   .60363251, (12, 1) = .75995044, (12, 2) = .65510417, (13, 1) 

   = .77994976, (13, 2) = .7251356, (14, 1) = .7999707, (14, 2) 

   = .75804148, (15, 1) = .81995146, (15, 2) = .76002419, (16, 

   1) = .83995244, (16, 2) = .8030069, (17, 1) = .85996729, 

   (17, 2) = .82774732, (18, 1) = .87994951, (18, 2) = 

   .8429559, (19, 1) = .8999458, (19, 2) = .8692888}, datatype 

   = float[8]), COLOUR(RGB, 0., 0.054901961, 0.47058824), 

  STYLE(POINT)), AXESLABELS("", ""), VIEW(DEFAULT, DEFAULT))
with(plots);
display(points);

Statistics:-Fit(a*y^3+b*x, Xvals, Yvals, y);
                              3                             
   HFloat(2.996866026020011) y  - HFloat(0.9272751314432008)
example("?");

  

 

I want to find the first positive solution of the system of trigonometric equations inside the loop.

The solutions are in the form of "d=number*_Z +number" but I need one exact solution to use it for next run of the loop.
 

restart;
L[0]:=0:
for i from 1 by 1 to 3 do
assume(0<d[i], d[i]<1):
assume(-0.01<a[i], a[i]<0):
L[i]:= L[i-1]+ d[i]:
sys[i]:={Re((-80*Pi*I*a[i]/((a[i]+1)^3))*exp(4*Pi*I*L[i])) = -0.4, Im((-80*Pi*I*a[i]/((a[i]+1)^3))*exp(4*Pi*I*L[i])) = 0.8}:
solve(sys[i], {a[i],d[i]}, useassumptions = true,AllSolutions=true):
end do;
 

These are the solutions:

d[1] = 0.03689590440 + 0.5000000000 _Z1

d[2] = -1.000000000 d[1] + 0.03689590440 + 0.5000000000 _Z2

d[3] = -1.000000000 d[1] - 1.000000000 d[2] + 0.03689590440 + 0.5000000000 _Z3

 

Hello all, 

 

This is my first time with Maple, I have been a student of Mathematica for 7 years. I purchased Maple to learn a new software and I have heard great things about it. I somehow dont feel the flexibility of Mathematica in Maple documentations. It seems to be a bit constrained and not very straight forward in some aspects. Please correct me if I am wrong and also point out to tutorials or documents that I should be looking at before nose diving into Maple.

worksheet example here: 

I have faced 2 simple problems which I think is a bug in some form, or I may be wrong. Please advise.

  1. How do I insert Equation 7 before Equation 6? The worksheet wont let me do it.
  2. Why are 'and' and 'in' bolded automatically in SECTION format?

Yahoo Finance recently discontinued their (largely undocumented) historical stock quote API.

Previously, you simply send a HTTP:-Get request like this…

HTTP:-Get(“http://ichart.yahoo.com/table.csv?s=AAPL&a=00&b=1&c=2016&d=00&e=1&f=2017&g=d&ignore=.csv")

…and get historical OHLCV (open, high, low, close, trading volume) data in your worksheet (in this case for AAPL between 1 January 2016 and 1 January 2017).

This no longer works! Yahoo shut the door on this easy-to-use and widely disseminated API.

You can still download historical stock quotes from Yahoo Finance into Maple, but the process is now somewhat more involved. My complete code in this worksheet but I'll step through the process below.

If you visit the updated Yahoo Finance website and download historical data for a ticker, you see a URL like this in the status bar of your browser

https://query1.finance.yahoo.com/v7/finance/download/AAPL?period1=1497727945&period2=1500319945&interval=1d&events=history&crumb=C9luNcNjVkK

Let's examine how ths URL is constructed.

  • period1 and period2 are Unix time stamps for your start and end date
  • interval is the data retrieval interval (this can be either 1d, 1w or 1m)
  • crumb is an alphanumeric code that’s periodically regenerated every time you download new historical data from from the Yahoo Finance website using your browser. Moreover, crumb is paired with a cookie that’s stored by your browser.

Here’s how to extract and supply the cookie-crumb pair to Yahoo Finance so you can still use Maple to retrieve historical stock quotes

Send a dummy request to get a cookie-crumb pair

res:=HTTP:-Get("https://finance.yahoo.com/lookup?s=bananas"):

Grab the crumb from the response

i:=StringTools:-Search("CrumbStore\":{\"crumb\":\"",res[2]):
crumbValue := res[2][i+22..i+32]
                  crumbValue := "btW01FWTBn3"

Store the cookie from the response

cookieHeader:=res[3]["Set-Cookie"]
    cookieHeader := "B=702eqhdcmq7cl&b=3&s=0t; expires=Mon,17-Jul-2018 20:27:01 GMT; path=/; domain=.yahoo.com

Construct the URL

  • Your desired start and end dates have to be defined as Unix time stamps. Converting a human readable date (like 1st January 2017) to a Unix timestamp is simple, so I won't cover it here.
  • The previously retrieved crumb has to be added to the URL.
ticker:="AAPL":
p1 := 1497709183:
p2 := 1500301183:
url:=cat("https://query1.finance.yahoo.com/v7/finance/download/",ticker,"?period1=",p1,"&period2=",p2,"&interval=1d&events=history&crumb=", crumbValue):

Send the request to Yahoo Finance, including the cookie in the header

data:=HTTP:-Get(url,headers = ["Cookie" = cookieHeader])

Your historical data is now returned

The historical data is now easily parsed into a matrix.

Please note that any use of Yahoo Finance has to be consistent with their terms of service.

I need a help on the error message below as when I enter it on my browser the answer is that there isn't any hel for this subject.

Error Message:

Error, (in DynamicSystems:-EquilibriumPoint) the independent variable in the equations does not match the 'continuoustimevar' (t) specified by the DynamicSystems[SystemOptions].

Thank you!

Hey friends

I want to solve this relation with respect to "M"analytically but maple answer me: "Warning, solutions may have been lost"

How I can solve this problem and get to an analytical solution. It must be noted -1<w<-1/3. we can fix "w" with any value inn this interval. It be accepted any solution for any fixed "w".

Thank you

Analytically_solution.mw

Hi everyone,

I am desperatly trying to find a reason to those weird results I get using LSSolve. It could really help me to understand, maybe I am using the function the wrong way.
I have a system of equations which is overdetermined that I wrote using an electrical simulation and kirchoff's laws.
I am trying to resolve it using the LSSolve function. Here is the list of residuals :

list := [-0.444299277411586e-2+(270.100000000000-Phi12_18)*D18, -.264819908561346+(627.030000000000-Phi23_18)*D18, .191242220011840+(-259.080000000000-Phi34_18)*D18, 0.269723795794403e-1+(-40.5060000000000-Phi45_18)*D18, 0.674200455699644e-2+(-10.1270000000000-Phi56_18)*D18, .109534122562258+(-197.290000000000-Phi67_18)*D18, 0.481462872723211e-3+(-2.41420000000000-Phi78_18)*D18, -0.346014532189641e-4+(-2.53290000000000-Phi89_18)*D18, -0.402474969346295e-4+(-2.94150000000000-Phi910_18)*D18, -0.632005430249463e-3+(-8.57100000000000-Phi1011_18)*D18, -0.105749265697549e-1+(-37.6580000000000-Phi1112_18)*D18, -0.116305497595306e-1+(-55.3250000000000-Phi1213_18)*D18, -0.581547498854927e-3+(-2.76630000000000-Phi1314_18)*D18, -0.371408130367776e-2+(-22.0900000000000-Phi1415_18)*D18, -0.886173700610320e-2+(-56.4810000000000-Phi1516_18)*D18, -0.478846208996643e-1+(262.447651185421-Phi12_18)*D29+(262.447651185421-Phi12_24)*D36, .348429199898355+(62.3165310883292-Phi23_18)*D29+(62.3165310883292-Phi23_24)*D36, .237294781239637+(41.8563477700905-Phi34_18)*D29+(41.8563477700905-Phi34_24)*D36, 0.356987380524040e-1+(6.12136413036823-Phi45_18)*D29+(6.12136413036823-Phi45_24)*D36, 0.892515544035472e-2+(1.53042068810978-Phi56_18)*D29+(1.53042068810978-Phi56_24)*D36, .163733792213247+(26.7554245920538-Phi67_18)*D29+(26.7554245920538-Phi67_24)*D36, 0.917897899527287e-3+(-0.110562085900856e-3-Phi78_18)*D29+(-0.110562085900856e-3-Phi78_24)*D36, 0.242480164562623e-4+(-.283316330467957-Phi89_18)*D29+(-.283316330467957-Phi89_24)*D36, 0.281967728090880e-4+(-.329007391842407-Phi910_18)*D29+(-.329007391842407-Phi910_24)*D36, -0.812318100863302e-3+(-1.22850243118112-Phi1011_18)*D29+(-1.22850243118112-Phi1011_24)*D36, -0.174002698946928e-1+(-9.57006175329410-Phi1112_18)*D29+(-9.57006175329410-Phi1112_24)*D36, -.125540933056649+(-44.2197489328973-Phi1213_18)*D29+(-44.2197489328973-Phi1213_24)*D36, -0.627722694977691e-2+(-2.21106159188713-Phi1314_18)*D29+(-2.21106159188713-Phi1314_24)*D36, -0.739424545575381e-1+(-24.8403831529913-Phi1415_18)*D29+(-24.8403831529913-Phi1415_24)*D36, -.203976357415920+(-68.0132712014090-Phi1516_18)*D29+(-68.0132712014090-Phi1516_24)*D36, 0.196522429267177e-1+(197.940000000000-Phi12_24)*D27, 0.368371276889244e-2+(57.8900000000000-Phi23_24)*D27, 0.144256702539785e-2+(48.4450000000000-Phi34_24)*D27, -0.115630146715321e-3+(10.-Phi45_24)*D27, -0.283028527731083e-4+(2.50010000000000-Phi56_24)*D27, -0.300476205822746e-2+(66.2640000000000-Phi67_24)*D27, -0.653509876948917e-3+(2.69040000000000-Phi78_24)*D27, -0.126753046978926e-2+(4.44790000000000-Phi89_24)*D27, -0.147212636486122e-2+(5.16530000000000-Phi910_24)*D27, -0.484316181019253e-2+(16.6000000000000-Phi1011_24)*D27, -0.298854531528585e-1+(96.8770000000000-Phi1112_24)*D27, -.120604432493978+(315.410000000000-Phi1213_24)*D27, -0.603334119632106e-2+(15.7700000000000-Phi1314_24)*D27, -0.664471982996522e-1+(167.170000000000-Phi1415_24)*D27, 0.786913003105101e-1+(-326.760000000000-Phi1516_24)*D27]


I know that all D values must be positive. When resolving the system without any constraints (D >= 0), i get the values I expected (knowing the input I used in the simulation), with a really low error :

result := LSSolve(list);

[1.82130325886306*10^(-8), [D10 = 0.200009334740825e-2, D11 = 0.666620509302803e-3, D14 = 0.222215208246154e-2, D15 = 0.128202791383597e-2, D17 = 0.499886140344411e-2, D19 = 0.302925526676043e-3, D2 = 0.100002349341980e-2, D20 = 0.142849446596938e-3, D22 = 0.111121127122156e-1, D23 = 0.222228054119820e-2, D25 = 0.714293621502836e-3, D26 = 0.833326349912537e-3, D28 = 0.217396531719902e-3, D3 = 0.400217567900069e-3, D6 = 0.166878862202449e-3, D7 = 0.999969828547956e-2, Phi1011_17 = -1.22850243118112, Phi1011_19 = -20.5335193736012, Phi1011_21 = -104.090964313150, Phi1011_23 = 19.2144499395683, Phi1112_17 = -9.57006175329410, Phi1112_19 = -81.6848630234903, Phi1112_21 = -242.149849175388, Phi1112_23 = 109.001351349915, Phi1213_17 = -44.2197489328973, Phi1213_19 = -92.8267195929548, Phi1213_21 = -204.444165890808, Phi1213_23 = -61.4447612788985, Phi12_17 = 262.447651185421, Phi12_19 = 262.149192406679, Phi12_21 = 256.248405276737, Phi12_23 = 246.521172863223, Phi1314_17 = -2.21106159188713, Phi1314_19 = -4.64255435896474, Phi1314_21 = -10.2212158757032, Phi1314_23 = -3.07798400495386, Phi1415_17 = -24.8403831529913, Phi1415_19 = -30.5944507718603, Phi1415_21 = -45.5847025259923, Phi1415_23 = -77.3297680041818, Phi1516_17 = -68.0132712014090, Phi1516_19 = -74.2023324471993, Phi1516_21 = -95.1952296374558, Phi1516_23 = -132.328467080565, Phi23_17 = 62.3165310883292, Phi23_19 = 200.804225452845, Phi23_21 = 130.018791598707, Phi23_23 = 73.7043262431720, Phi34_17 = 41.8563477700905, Phi34_19 = 343.409987932231, Phi34_21 = 159.593996060841, Phi34_23 = 62.6564757702407, Phi45_17 = 6.12136413036823, Phi45_19 = 12.3839171939746, Phi45_21 = 46.0005281797016, Phi45_23 = 13.1665796516893, Phi56_17 = 1.53042068810978, Phi56_19 = 3.16614687399595, Phi56_21 = 11.4998114891963, Phi56_23 = 3.29093394692614, Phi67_17 = 26.7554245920538, Phi67_19 = -244.288977944524, Phi67_21 = 376.351493538080, Phi67_23 = 88.4830465193635, Phi78_17 = -0.110562085900856e-3, Phi78_19 = -6.28061380389266, Phi78_21 = 43.7035845962372, Phi78_23 = 3.35123473697264, Phi89_17 = -.283316330467957, Phi89_19 = -6.18811507913178, Phi89_21 = -13.9258224376815, Phi89_23 = 5.20325572546379, Phi910_17 = -.329007391842407, Phi910_19 = -7.18580970783931, Phi910_21 = -16.1669897128450, Phi910_23 = 6.04291224185087]]


When adding the constraints that D should be positive (and that are actually positive in the previous result), I get a worse result in term of precisions :

LSSolve(list, {D10 >= 0, D11 >= 0, D14 >= 0, D15 >= 0, D17 >= 0, D19 >= 0, D2 >= 0, D20 >= 0, D22 >= 0, D23 >= 0, D25 >= 0, D26 >= 0, D28 >= 0, D3 >= 0, D6 >= 0, D7 >= 0});

[0.667302976414869964e-1, [D10 = 0.240199442379079e-2, D11 = 0.666577572133538e-3, D14 = 0.222218786790062e-2, D15 = 0.128192441757651e-2, D17 = 0.278678889056743e-2, D19 = 0.200473317719685e-3, D2 = 0.109938538155804e-2, D20 = 0.840721762649974e-4, D22 = 0.685770482726534e-3, D23 = -1.387530857*10^(-312), D25 = 0.714397733627028e-3, D26 = 0.833201232339238e-3, D28 = 0.204319731851617e-3, D3 = 0.419994015872111e-3, D6 = 0.191996909862889e-3, D7 = 0.103884505319047e-1, Phi1011_17 = -.709707335593168, Phi1011_19 = -15.7863975896827, Phi1011_21 = -151.171843708558, Phi1011_23 = 19.2211409030343, Phi1112_17 = -8.90604676283968, Phi1112_19 = -75.8627539382983, Phi1112_21 = -311.423930967299, Phi1112_23 = 109.002880650927, Phi1213_17 = -54.9212365194647, Phi1213_19 = -89.9790565093006, Phi1213_21 = -250.971671756001, Phi1213_23 = -61.5160003335629, Phi12_17 = 251.480872515883, Phi12_19 = 255.977573006508, Phi12_21 = 254.397100891354, Phi12_23 = 246.524672366158, Phi1314_17 = -2.74614386328796, Phi1314_19 = -4.48401822538664, Phi1314_21 = -12.5381572344771, Phi1314_23 = -3.08154491280567, Phi1415_17 = -31.8947514252141, Phi1415_19 = -30.8090400512349, Phi1415_21 = -51.0499196769535, Phi1415_23 = -77.3268969229600, Phi1516_17 = -87.7947790488482, Phi1516_19 = -75.5403005246575, Phi1516_21 = -101.763771364478, Phi1516_23 = -132.314524393221, Phi23_17 = 94.0093590848714, Phi23_19 = 86.4429757025976, Phi23_21 = 108.554765004168, Phi23_23 = 73.7072279431268, Phi34_17 = 87.6938924370977, Phi34_19 = 82.3922347753764, Phi34_21 = 88.5582078636840, Phi34_23 = 62.6604078051191, Phi45_17 = 13.1910198060107, Phi45_19 = 69.3008595136787, Phi45_21 = 15.5530983566712, Phi45_23 = 13.1677681559684, Phi56_17 = 3.29792072169498, Phi56_19 = 17.4003349272078, Phi56_21 = 3.88187632917493, Phi56_23 = 3.29123115133383, Phi67_17 = 60.0045707036166, Phi67_19 = 54.3070868626015, Phi67_21 = 87.9421288802858, Phi67_23 = 88.4929920125095, Phi78_17 = .279952186311827, Phi78_19 = -3.50632712699693, Phi78_21 = -20.3872167203319, Phi78_23 = 3.35213748642018, Phi89_17 = -0.991299169828910e-1, Phi89_19 = -4.44636683843093, Phi89_21 = 297.888811926331, Phi89_23 = 5.20500671661437, Phi910_17 = -.115101700555720, Phi910_19 = -5.16603761776826, Phi910_21 = 346.033351291632, Phi910_23 = 6.04494564310825]]

I also get the warning "limiting number of major iterations has been reached".
Can someone explain me?

It may not seem important at first sight, but sometimes when using my program I get wrong values and a negative D, which is not possible. Therefore I try to add a positive constraint, but the LLSolve function doesn't return anything except the error "no improved point could be found", which is weird because when I manually substitute the value I consider correct, i get a really low error. I can show you the related list of equations if you are interested...

 

Thanks in advance,

Lilian

the following code results in an error message: Error, (in forget) lexically scoped parameter out of context

If I click on this error message, it brings me to a page which I visited too often.

if I uncomment the irrelevant minimize command, the error message disappears.

How can I prevent this error without giving irrelevant commands?

kind regards,

Harry Garst

I would like to use method wsolve for solving polynomial equations. The method has been implemented by Wang: https://link.springer.com/chapter/10.1007/978-3-7091-6604-8_9

As it is written in the text the metod is part of charsets package. But I can seem to find it and active it. I can find package online (http://wang.cc4cm.org/charsets.html), but I don't know how to add it to Maple.

I need to use this method in order to prove geometry theorems (and not any other method will do) and compare my results with results of other researchers.

hello.i have a problem for solving this equation.i dont why my past post about this is deleted.!!!

please help me

thanks,,,

9.mw
 

restart:

A1:= 27159:  n:= 0.59:  A2:= 70941:  h0:= 3e-4:   
L:= 0.8:  dpx := -98100:  uc:= 0.007:  k:=2.7:

ODE:= (A3,y)->
   (h0^(n+1)*L/sqrt(n)*(A1*exp(sqrt(n)*y/L)-A2*exp(-sqrt(n)*y/L))/k+dpx*y*h0^(n+1)/k+A3*(h0)^n/k)^(1/n)
;

proc (A3, y) options operator, arrow; (h0^(n+1)*L*(A1*exp(sqrt(n)*y/L)-A2*exp(-sqrt(n)*y/L))/(sqrt(n)*k)+dpx*y*h0^(n+1)/k+A3*h0^n/k)^(1/n) end proc

(1)

ODEINT:= proc(A3)
option remember;
local y;
   evalf(Int(ODE(A3,y), y= 0..1, epsilon= 1e-7)) - uc
end proc:

ReINT:= proc(A3x, A3y)
   Digits:= 15:
   Re(ODEINT(A3x + I*A3y))
end proc:

ImINT:= subs(Re= Im, eval(ReINT)):

Digits:= 7:
a3:= fsolve([ReINT, ImINT]);

fsolve([ReINT, ImINT])

(2)

A3:= Complex(a3[]);

Complex(fsolve([ReINT, ImINT])[])

(3)

Solve as IVP:

Digits:= 15:
sol:= dsolve({diff(u(y),y) = ODE(A3,y), u(0)=0}, numeric, range=0..1,  output=listprocedure):

Warning,  computation interrupted

 

NULL

``

NULL

NULL

plots:-odeplot(
   sol, [[y, Re(u(y))], [y, Im(u(y))]], y= 0..1,
   legend= [real, imag], labels= [y, u(y)]
);

Verify that boundary condition at u(1) is satisfied:

 

 

 

abs(eval(u(y), sol(1)) - uc);

sol(.5);

"\"

fy3 := eval(u(y), sol); with(CurveFitting); fy33 := PolynomialInterpolation([[0, fy3(0)], [.1, fy3(.1)], [.2, fy3(.2)], [.3, fy3(.3)], [.4, fy3(.4)], [.5, fy3(.5)], [.6, fy3(.6)], [.7, fy3(.7)], [.8, fy3(.8)], [.9, fy3(.9)], [1, fy3(1)]], y)

DEBI := int(fy33, y = 0 .. 1)

NULL

``

plot(DEBI, y = 0 .. 1)

``

``

``

``

``


 

Download 9.mw

 

First 940 941 942 943 944 945 946 Last Page 942 of 2224