## Contour Plot from list...

Please, how do plot the contour plot of im(qq) vs Re(qq) from the list below:

qq= [2.106333379+.6286420119*I, 2.106333379-.6286420119*I, 4.654463885, 7.843624703, 10.99193295, 14.13546782, 17.27782732, 20.41978346, 23.56157073, 26.70327712, 29.84494078, 32.98658013, 36.12820481, 39.26982019, 42.41142944, 45.55303453, 48.69463669, 51.83623675, 54.97783528, 58.11943264, 61.26102914]

## how to give variable a type and also make it stat...

I need to make my base class local variable static, so that when extending the class, the subclass will share these variable and use their current values as set by the base class. If I do not make them static, then the base class when extended, will get fresh instance of these variable, losing their original values, which is not what I want.

To do this, one must make the base class variables static

This works, but now I do not know the syntax where to put the type on the variable.

I can't write   local m::integer::static; nor local m::static::integer;

I could only write local m::static; but this means I lost the ability to have a type on the variable and lost some of the type checking which is nice to have in Maple. From Maple help:

Here is example

restart;

base_class:=module()
option object;
local n::static;  #I want this type to ::integer also. But do not know how

export set_n::static:=proc(_self,n::integer,\$)
_self:-n := n;
end proc;

export process::static:=proc(_self,\$)
local o;
o:=Object(sub_class);
o:-process();
end proc;
end module;

sub_class:=module()
option object(base_class);
process:=proc(_self,\$)
print("in sub class. _self:-n = ",_self:-n);
end proc;
end module;

o:=Object(base_class);
o:-set_n(10);
o:-process()

"in sub class. _self:-n = ", 10

The above is all working OK. I just would like to make n in the base class of type ::integer as well as ::static

Is there a syntax for doing this?

## Modeling - EMC Designer...

Hi,

One of my areas of expertise is in Designer Filters EMC. Could any professional that already uses MapleFlow for EMC and Electromagnetism, help me about the main functions of this amazing software?

Thanks.

Leandro Zamaro

## How to make Exported equations readable in excel?...

I have a set of formulas I saved in a matrix and the exported the matrix to Excel. However when I open the file in Excel the equations are in prefix notation (I think).  That's not exactly human readable friendly.  If I copy and paste straight into excel they are readable.

It there a way to make the Maple export similar?

EDIT:-  I exported as a.csv file because if export as .xlsx    all the equation change into "#NUM!" in the spreadsheed.

 (1)

 (2)

 (3)

 (4)

 (5)

 (6)

 (7)

 (8)

 (9)

 (10)

 (11)

 (12)

 (13)

 (14)

 (15)

 (16)

 (17)

 (18)

 (19)

## Color Error in plot ...

Hi.

What wrong could be there with the color line?

 > restart:
 > with(plots):
 > equ1 := BesselJ(sqrt(17)/2, 10*sqrt(t)*sqrt(2))/t^(1/4) + BesselY(sqrt(17)/2, 10*sqrt(t)*sqrt(2))/t^(1/4):
 > equ2 := BesselJ(sqrt(17)/2, 10*sqrt(t)*sqrt(2))/t^(1/4) + 5*BesselY(sqrt(17)/2, 10*sqrt(t)*sqrt(2))/t^(1/4):
 > equ3 := BesselJ(sqrt(17)/2, 10*sqrt(t))/t^(1/4) + 5*BesselY(sqrt(17)/2, 10*sqrt(t))/t^(1/4):
 > tmax   := 30: colors := ["Red", "Violet", "Blue"]: p1 := plot([equ1, equ2, equ3], t = 0 .. tmax, labels = [t, T[2](t)], tickmarks = [0, 0], labelfont = [TIMES, ITALIC, 12], axes = boxed, color = colors): ymin := min(op~(1, op~(2, op~(2, [plottools:-getdata(p1)])))): ymax := max(op~(2, op~(2, op~(2, [plottools:-getdata(p1)])))): dy   := 2*ymax:
 > legend1 := typeset(C[3] = 1, ` , `, C[4] = 1, ` , `, Omega^2 = 50): legend2 := typeset(C[3] = 1, ` , `, C[4] = 5, ` , `, Omega^2 = 50): legend3 := typeset(C[3] = 1, ` , `, C[4] = 5, ` , `, Omega^2 = 25): p2 := seq(textplot([tmax-2, ymax-k*dy/20, legend||k], align=left), k=1..3):
 > p3 := seq(plot([[tmax-2, ymax-k*dy/20], [tmax-1, ymax-k*dy/20]], color=colors[k]), k=1..3): display(p1, p2, p3, view=[default, -ymax..ymax], size=[800, 500])
 (1)
 >

## How to speed up the calculation of the double inte...

I want to calculate the double integral of the following expression which includes sum of several Legendre polynomial terms, but the speed is so low. Any suggestion to speed up the calculation?

 >
 >
 >
 >
 >
 >
 >
 >
 >

## CompositionSeries just work in transitive group?...

When I run this code, I will get a error information:

CompositionSeries(SmallGroup(336, 209))

It's mean this function just work in transitive group? But IsTransitive(SmallGroup(336, 209)) will get true. Is it a bug of maple? Or do I have any misunderstandings?

## densityplot legend...

Hi,

I am using the following (dummy) code to generate a density plot.

densityplot(x-y^2, x=-5..5, y=-5..5, axes=boxed, style=patchnogrid, numpoints=1000, legendstyle=[location=bottom], labels=[x, y]);

While this command does generate x vs y plots with varying color shared, I cannot figure out where the function (x-y^2) value by looking at the color shades. Is there a way to produce a legend along with the plot that will demonstrate how the function is taking different values with parameters?

I found a similar post, dated 2005, that suggests using the "s_tyle=" command. However, it does not work for some reasons. I would appreciate help in this regard.

Thank you,

Omkar

## How to solve the given BVP using differential tran...

HI, I have numerically solved the given problem using the dsolve command But I want to solve the same problem using the Differential transformation method.
Can anyone help me to get the series solution for the given problem using DTM.

I want to compare the numerical results with DTM results when lambda =0.5.

eqn1 := diff(f(eta), `\$`(eta, 3))+f(eta)*(diff(f(eta), `\$`(eta, 2)))-(diff(f(eta), eta))^2-lambda*(diff(f(eta), eta)) = 0.

eqn2 := diff(theta(eta), `\$`(eta, 2))+f(eta)*(diff(theta(eta), eta))*Pr = 0

Bcs := (D(f))(0) = 1, f(0) = 0, (D(f))(infinity) = 0, theta(0) = 1, theta(infinity) = 0;

[lambda = .5, Pr = 6.3]

## package of Fractional Symmetry ASPv4.6.3.mpl...

restart;

DESOLVII_V5R5 (March 2011)(c), by Dr. K. T. Vu, Dr. J.

Carminati and Miss G. Jefferson

The authors kindly request that this software be referenced, if

it is used in work eventuating in a publication, by citing

the article:

K.T. Vu, G.F. Jefferson, J. Carminati, Finding generalised

symmetries of differential equations

using the MAPLE package DESOLVII,Comput. Phys. Commun. 183

(2012) 1044-1054.

-------------

ASP (November 2011), by Miss G. Jefferson and Dr. J. Carminati

The authors kindly request that this software be referenced, if

it is used in work eventuating in a publication, by citing

the article:

G.F. Jefferson, J. Carminati, ASP: Automated Symbolic

Computation of Approximate Symmetries

of Differential Equations, Comput. Phys. Comm. 184 (2013)

1045-1063.

[classify, comtab, defeqn, deteq_split, extgenerator, gendef,

genvec, icde_cons, liesolve, mod_eq, originalVar, pdesolv,

reduceVar, reduceVargen, symmetry, varchange]

ASP := _m2229977204928

with(ASP);
[ApproximateSymmetry, applygenerator, commutator]

with(desolv);
[classify, comtab, defeqn, deteq_split, extgenerator, gendef,

genvec, icde_cons, liesolve, mod_eq, originalVar, pdesolv,

reduceVar, reduceVargen, symmetry, varchange]

FracSym (April 2013), by Miss G. Jefferson and Dr. J. Carminati

The authors kindly request that this software be referenced, if

it is used in work eventuating in a publication, by citing:

G.F. Jefferson, J. Carminati, FracSym: Automated symbolic

computation of Lie symmetries

of fractional differential equations, Comput. Phys. Comm.

Submitted May 2013.

with(FracSym);
[Rfracdiff, TotalD, applyFracgen, evalTotalD, expandsum, fracDet,

fracGen, split]

Rfracdiff(u(x, t), t, alpha);
alpha
D[t     ](u(x, t))

Rfracdiff(u(x, t) &* v(x, t), t, alpha);
infinity
-----
\
)                          (alpha - n)              n
/     binomial(alpha, n) D[t           ](u(x, t)) D[t ](v(x, t))
-----
n = 0

Rfracdiff(v(x, t) &* u(x, t), t, alpha);
infinity
-----
\
)                          (alpha - n)              n
/     binomial(alpha, n) D[t           ](v(x, t)) D[t ](u(x, t))
-----
n = 0

Rfracdiff(u(x, t) &* v(x, t), t, 2);
/  2         \
| d          |             / d         \ / d         \
|---- u(x, t)| v(x, t) + 2 |--- u(x, t)| |--- v(x, t)|
|   2        |             \ dt        / \ dt        /
\ dt         /

/  2         \
| d          |
+ u(x, t) |---- v(x, t)|
|   2        |
\ dt         /

TotalD(xi[x](x, y), x, 2);
2
D[x ](xi[x](x, y))

evalTotalD([%], [y], [x]);
[     /  2             \     /   2              \
[   2 | d              |     |  d               |
[y_x  |---- xi[x](x, y)| + 2 |------ xi[x](x, y)| y_x
[     |   2            |     \ dy dx            /
[     \ dy             /

/  2             \]
/ d             \   | d              |]
+ y_xx |--- xi[x](x, y)| + |---- xi[x](x, y)|]
\ dy            /   |   2            |]
\ dx             /]

fde1 := Rfracdiff(u(x, t), t, alpha) = -u(x, t)*diff(u(x, t), x) - diff(u(x, t), x, x) - diff(u(x, t), x, x, x) - diff(u(x, t), x, x, x, x);
alpha                      / d         \
fde1 := D[t     ](u(x, t)) = -u(x, t) |--- u(x, t)|
\ dx        /

/  2         \   /  3         \   /  4         \
| d          |   | d          |   | d          |
- |---- u(x, t)| - |---- u(x, t)| - |---- u(x, t)|
|   2        |   |   3        |   |   4        |
\ dx         /   \ dx         /   \ dx         /

deteqs := fracDet([fde1], [u], [x, t], 2);
Intervals/values considered for the fractional derivative/s:

{0 < alpha, alpha < 1}

[
[
[[  2
[[ d                     d
deteqs := [[---- eta[u](x, t, u), --- xi[t](x, t, u),
[[   2                   du
[[ du

d                   d                   d
--- xi[t](x, t, u), --- xi[t](x, t, u), --- xi[x](x, t, u),
du                  dx                  du

2                    2
d                   d                    d
--- xi[x](x, t, u), ---- xi[t](x, t, u), ---- xi[t](x, t, u),
du                    2                    2
du                   du

2
d                         / d                \
---- xi[t](x, t, u), alpha |--- xi[x](x, t, u)|,
2                       \ dt               /
du

2
/ d                \   d
alpha |--- xi[x](x, t, u)|, ---- xi[t](x, t, u),
\ du               /     2
du

2                    2                    3
d                    d                    d
---- xi[x](x, t, u), ---- xi[x](x, t, u), ---- xi[t](x, t, u),
2                    2                    3
du                   du                   du

3                    3                    4
d                    d                    d
---- xi[t](x, t, u), ---- xi[x](x, t, u), ---- xi[t](x, t, u),
3                    3                    4
du                   du                   du

4
d
---- xi[x](x, t, u),
4
du

/  2                \
| d                 |     / d                \
-6 |---- xi[t](x, t, u)| - 3 |--- xi[t](x, t, u)|,
|   2               |     \ dx               /
\ dx                /

/ d                \     / d                \
alpha |--- xi[t](x, t, u)| - 4 |--- xi[x](x, t, u)|,
\ dt               /     \ dx               /

/ d                \
|--- xi[t](x, t, u)| (alpha - 1),
\ du               /

/   2                 \
/ d                \      |  d                  |
-3 |--- xi[t](x, t, u)| - 12 |------ xi[t](x, t, u)|,
\ du               /      \ dx du               /

/ d                \
alpha |--- xi[t](x, t, u)| (alpha - 1),
\ du               /

/ d                \
alpha |--- xi[x](x, t, u)| (alpha - 1),
\ du               /

/  2                \      /   3                  \
| d                 |      |  d                   |
-3 |---- xi[t](x, t, u)| - 12 |------- xi[t](x, t, u)|,
|   2               |      |      2               |
\ du                /      \ dx du                /

/   2                 \
|  d                  |
alpha |------ xi[t](x, t, u)| (alpha - 1),
\ du dt               /

/   2                 \
|  d                  |
alpha |------ xi[x](x, t, u)| (alpha - 1),
\ du dt               /

/  2                \
| d                 |
alpha |---- xi[t](x, t, u)| (alpha - 1),
|   2               |
\ du                /

/  2                \
| d                 |
alpha |---- xi[x](x, t, u)| (alpha - 1),
|   2               |
\ dt                /

/  2                \
| d                 |
alpha |---- xi[x](x, t, u)| (alpha - 1),
|   2               |
\ du                /

/  3                \     /   4                  \
| d                 |     |  d                   |
-|---- xi[t](x, t, u)| - 4 |------- xi[t](x, t, u)|,
|   3               |     |      3               |
\ du                /     \ dx du                /
/   2                 \
/ d                \     |  d                  |
-|--- xi[t](x, t, u)| - 4 |------ xi[t](x, t, u)|
\ du               /     \ dx du               /

/ d                \     / d                \
+ alpha |--- xi[t](x, t, u)|, -4 |--- xi[x](x, t, u)|
\ du               /     \ du               /

/  2                 \      /   2                 \
| d                  |      |  d                  |
+ 4 |---- eta[u](x, t, u)| - 16 |------ xi[x](x, t, u)|,
|   2                |      \ dx du               /
\ du                 /
/  2                 \
/ d                \     | d                  |
-3 |--- xi[x](x, t, u)| + 3 |---- eta[u](x, t, u)|
\ du               /     |   2                |
\ du                 /

/   2                 \     /  3                \
|  d                  |     | d                 |
- 12 |------ xi[x](x, t, u)|, -4 |---- xi[t](x, t, u)|
\ dx du               /     |   3               |
\ dx                /

/  2                \
/ d                \     | d                 |
- 2 |--- xi[t](x, t, u)| - 3 |---- xi[t](x, t, u)|,
\ dx               /     |   2               |
\ dx                /
/   2                 \      /   3                  \
|  d                  |      |  d                   |
-6 |------ xi[t](x, t, u)| - 12 |------- xi[t](x, t, u)|
\ dx du               /      |   2                  |
\ dx  du               /

/ d                \
- 2 |--- xi[t](x, t, u)|,
\ du               /

/ d                \
alpha |--- xi[t](x, t, u)| (alpha - 1) (alpha - 2),
\ du               /
/  2                \     /  3                 \
| d                 |     | d                  |
-6 |---- xi[x](x, t, u)| + 6 |---- eta[u](x, t, u)|
|   2               |     |   3                |
\ du                /     \ du                 /

/   3                  \     /   3                  \
|  d                   |     |  d                   |
- 24 |------- xi[x](x, t, u)|, -3 |------- xi[t](x, t, u)|
|      2               |     |      2               |
\ dx du                /     \ dx du                /

/    4                  \   /  2                \
|   d                   |   | d                 |        /
- 6 |-------- xi[t](x, t, u)| - |---- xi[t](x, t, u)|, alpha |
|   2   2               |   |   2               |        \
\ dx  du                /   \ du                /

d                \     / d                \
--- xi[t](x, t, u)| - 3 |--- xi[x](x, t, u)|
dt               /     \ dx               /

/   2                  \     /  2                \
|  d                   |     | d                 |
+ 4 |------ eta[u](x, t, u)| - 6 |---- xi[x](x, t, u)|,
\ dx du                /     |   2               |
\ dx                /

/   2                 \
|  d                  |
alpha |------ xi[t](x, t, u)| (alpha - 1) (alpha - 2),
\ du dt               /

/  2                \
| d                 |
alpha |---- xi[t](x, t, u)| (alpha - 1) (alpha - 2),
|   2               |
\ du                /
/   2                 \     /   3                  \
|  d                  |     |  d                   |
-3 |------ xi[t](x, t, u)| - 6 |------- xi[t](x, t, u)|
\ dx du               /     |   2                  |
\ dx  du               /

/
/ d                \         / d                \        |
- |--- xi[t](x, t, u)| + alpha |--- xi[t](x, t, u)|, alpha |
\ du               /         \ du               /        |
\
/  2                \     /   2                  \
| d                 |     |  d                   |
-alpha |---- xi[t](x, t, u)| + 2 |------ eta[u](x, t, u)|
|   2               |     \ du dt                /
\ dt                /

/  2                \\   /  3                \
| d                 ||   | d                 |
+ |---- xi[t](x, t, u)||, -|---- xi[x](x, t, u)|
|   2               ||   |   3               |
\ dt                //   \ du                /

/   4                  \   /  4                 \
|  d                   |   | d                  |
- 4 |------- xi[x](x, t, u)| + |---- eta[u](x, t, u)|,
|      3               |   |   4                |
\ dx du                /   \ du                 /
/  2                \
/ d                \   | d                 |
-u |--- xi[t](x, t, u)| - |---- xi[t](x, t, u)|
\ dx               /   |   2               |
\ dx                /

/  3                \   /  4                \
| d                 |   | d                 |
- |---- xi[t](x, t, u)| - |---- xi[t](x, t, u)|,
|   3               |   |   4               |
\ dx                /   \ dx                /

/   3                  \
|  d                   |
alpha |------- xi[t](x, t, u)| (alpha - 1) (alpha - 2),
|      2               |
\ du dt                /

/   3                  \
|  d                   |
alpha |------- xi[t](x, t, u)| (alpha - 1) (alpha - 2),
|   2                  |
\ du  dt               /

/  3                \
| d                 |
alpha |---- xi[t](x, t, u)| (alpha - 1) (alpha - 2),
|   3               |
\ du                /
/  2                 \
/ d                \     | d                  |
-3 |--- xi[x](x, t, u)| + 3 |---- eta[u](x, t, u)|
\ du               /     |   2                |
\ du                 /

/   2                 \      /   3                   \
|  d                  |      |  d                    |
- 9 |------ xi[x](x, t, u)| + 12 |------- eta[u](x, t, u)|
\ dx du               /      |      2                |
\ dx du                 /

/   3                  \
|  d                   |        / d                \
- 18 |------- xi[x](x, t, u)|, alpha |--- xi[t](x, t, u)| u
|   2                  |        \ du               /
\ dx  du               /

/   3                  \     /   4                  \
|  d                   |     |  d                   |
- 3 |------- xi[t](x, t, u)| - 4 |------- xi[t](x, t, u)|
|   2                  |     |   3                  |
\ dx  du               /     \ dx  du               /

/   2                 \
|  d                  |   / d                \          /
- 2 |------ xi[t](x, t, u)| - |--- xi[t](x, t, u)| u, alpha |
\ dx du               /   \ du               /          \

/  3                \
d                \     | d                 |
--- xi[t](x, t, u)| - 4 |---- xi[x](x, t, u)|
dt               /     |   3               |
\ dx                /

/  2                \
| d                 |     / d                \
- 3 |---- xi[x](x, t, u)| - 2 |--- xi[x](x, t, u)|
|   2               |     \ dx               /
\ dx                /

/   3                   \     /   2                  \
|  d                    |     |  d                   |
+ 6 |------- eta[u](x, t, u)| + 3 |------ eta[u](x, t, u)|,
|   2                   |     \ dx du                /
\ dx  du                /
/  2                \   /  3                 \
| d                 |   | d                  |
-|---- xi[x](x, t, u)| + |---- eta[u](x, t, u)|
|   2               |   |   3                |
\ du                /   \ du                 /

/   3                  \     /   4                   \
|  d                   |     |  d                    |
- 3 |------- xi[x](x, t, u)| + 4 |------- eta[u](x, t, u)|
|      2               |     |      3                |
\ dx du                /     \ dx du                 /

/    4                  \              /
|   d                   |              |
- 6 |-------- xi[x](x, t, u)|, (alpha - 1) |
|   2   2               |              |
\ dx  du                /              \
/  3                \     /   3                   \
| d                 |     |  d                    |
-alpha |---- xi[t](x, t, u)| + 3 |------- eta[u](x, t, u)|
|   3               |     |      2                |
\ dt                /     \ du dt                 /

/  3                \\
| d                 ||           / d                \
+ 2 |---- xi[t](x, t, u)|| alpha, -u |--- xi[x](x, t, u)|
|   3               ||           \ du               /
\ dt                //

/  2                 \     /   2                 \
| d                  |     |  d                  |
+ |---- eta[u](x, t, u)| - 2 |------ xi[x](x, t, u)|
|   2                |     \ dx du               /
\ du                 /

/   3                   \     /   3                  \
|  d                    |     |  d                   |
+ 3 |------- eta[u](x, t, u)| - 3 |------- xi[x](x, t, u)|
|      2                |     |   2                  |
\ dx du                 /     \ dx  du               /

/   4                  \     /    4                   \
|  d                   |     |   d                    |
- 4 |------- xi[x](x, t, u)| + 6 |-------- eta[u](x, t, u)|,
|   3                  |     |   2   2                |
\ dx  du               /     \ dx  du                 /
/ d                \
-u |--- xi[x](x, t, u)| + eta[u](x, t, u)
\ dx               /

/   2                  \
/ d                \       |  d                   |
+ alpha |--- xi[t](x, t, u)| u + 2 |------ eta[u](x, t, u)|
\ dt               /       \ dx du                /

/  2                \     /   3                   \
| d                 |     |  d                    |
- |---- xi[x](x, t, u)| + 3 |------- eta[u](x, t, u)|
|   2               |     |   2                   |
\ dx                /     \ dx  du                /

/  3                \     /   4                   \
| d                 |     |  d                    |
- |---- xi[x](x, t, u)| + 4 |------- eta[u](x, t, u)|
|   3               |     |   3                   |
\ dx                /     \ dx  du                /

[
[
/  4                \]  [
| d                 |]  [
- |---- xi[x](x, t, u)|], [xi[t](x, 0, u) = 0, (Diff(
|   4               |]  [
\ dx                /]  [

/ d                 \
eta[u](x, t, u), t \$ alpha)) + u |--- eta[u](x, t, u)|
\ dx                /

/    / d                            \\
- u |Diff|--- eta[u](x, t, u), t \$ alpha||
\    \ du                           //

/  3                 \   /  4                 \
| d                  |   | d                  |
+ |---- eta[u](x, t, u)| + |---- eta[u](x, t, u)|
|   3                |   |   4                |
\ dx                 /   \ dx                 /

/infinity
| -----
/  2                 \  |  \
| d                  |  |   )    /    1   /
+ |---- eta[u](x, t, u)|, |  /     |- ----- |binomial(alpha, n)
|   2                |  | -----  \  n + 1 \
\ dx                 /  \ n = 3

/   (alpha - n)              (n + 1)
|D[t           ](u(x, t)) D[t       ](xi[t](x, t, u)) alpha
\

(alpha - n)              (n + 1)
- D[t           ](u(x, t)) D[t       ](xi[t](x, t, u)) n

(alpha - n) / d         \    n
+ D[t           ]|--- u(x, t)| D[t ](xi[x](x, t, u)) n
\ dx        /

\   /Sum(
|   |
|   |
(alpha - n) / d         \    n                 \\\|   |
+ D[t           ]|--- u(x, t)| D[t ](xi[x](x, t, u))|||| + |
\ dx        /                      ///|   |
/   \

/    / d                        \\
binomial(alpha, n) |Diff|--- eta[u](x, t, u), t \$ n||
\    \ du                       //

(alpha - n) (u(x, t)), n = 3 .. infinity)\]
D[t           ]                             |]
|]
|]
|],
|]
/]

]
]
]
]
[xi[x](x, t, u), xi[t](x, t, u), eta[u](x, t, u)], [x, t, u]]
]
]

sol1 := pdesolv(expand(deteqs[1]), deteqs[3], deteqs[4]);
Error, (in desolv/lderivx) cannot determine if this expression is true or false: 1 < x |C:/Program Files/Maple 2020/lib/ASP v4.6.3.txt:4312|

## Maple and Matlab2022a...

1. I use both Maple and Matlab
2. I also install (a stripped down version of) Maple as the "symbolic toolbox" for Matlab using the executable MapleToolbox2022.0WindowsX64Installer.exe, which lives in C:\Program Files\Maple 2022. This gives me acces to (some) symbolic computation capability from within Matlab.
3. This installation process has been working for as long as I remember, certainly more than 10 years
4. With Maple 2022 and Matlab R2022a, this installation process ran with no problems and I can perform symbolic computation within Matlab
5. However, although the Matlab help lists the Maple toolbox as supplemental software (as in all previous releases), I can no longer acces help for Maple from within Matlab - I just get a "Page not found" message
6. The relevant Maple "help" is at the same place within the Matlab folder structure which is C:\Program Files\MATLAB\R2022a\toolbox\maple\html
7. I have just spoken to support at Matlab and they claim tha this must be a Maple (or Maple toolbox installer issue) - so nothing to do with them!
8. Has anyone else had a similar problem andd found a workaround?

## Arial makes sign disappear in MathContainer...

Switching font to Arial apparently makes the sign disappear in MathContainers.

Vorzeichen.mw

## How do I do mathematical modelling of planetary mo...

If i want to do mathematical modelling for planetary motion, how can maple help me with it?

## Maple 2021 slow...

Anyone experience a delay in typing as the screen fills with text/math etc.?

I'm using Maple 2021 and as the space is filled typing slows. I can finish typing and watch the last 4 keys enter on the screen.

## I have a problem with the "Diff" command....

Hi !

Looks like there is a bug in the inert "Diff" command.

I have Maple 2018 on Windows 10 ,64 bits.

Does Maple consider Diff(f(x),x) to be equal to Diff(f(x),[x]) ?

It should be the same.

Maple displays  that it is equal but keeps in memory something else.

In the attached file, I give a very simple example.

I don't like to say this but my old version of Maple V Release V (1997) is more consistent i.e.

this version shows it's different and  keeps in memory that difference.

diff-problem.mw

I wonder if newer versions have this problem ?

Best regards !

 1 2 3 4 5 6 7 Last Page 3 of 1934
﻿