Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

with(DEtools):
phaseportrait([secret], [a(t), b(t), c(t)], t = -2 .. 2, [[a(0) = 1, b(0) = 0, c(0) = 2]], stepsize = 0.5e-1, scene = [c(t), a(t)], linecolour = sin((1/2)*t*Pi), method = classical[foreuler]);

Error, (in DEtools/phaseportrait) the ODE system does not contain derivatives of the unknown function a

Hello guys, i have some problems.

 

i have system

\dot{x} = Ax + Bu


s=b*u = 

now, we have X' = (A+S)X,  i need numeric/analytical solution and found Vector(X)

I have some problems with syntax maple.

Sorry for my bad english.

 

ricatti.mw

 

Formulating and solving the equivalence problem for Schwarzschild metric in a simple case

 

In connection with the digitizing in Maple 2016 of the database of solutions to Einstein's equations of the book Exact Solutions to Einstein Field Equations. I was recently asked about a statement found in the "What is new in Physics in Maple 2016" page:

  

In the Maple PDEtools package, you have the mathematical tools - including a complete symmetry approach - to work with the underlying [Einstein’s] partial differential equations. [By combining that functionality with the one in the Physics and Physics:-Tetrads package] you can also formulate and, depending on the metrics also resolve, the equivalence problem; that is: to answer whether or not, given two metrics, they can be obtained from each other by a transformation of coordinates, as well as compute the transformation.

This question posed is a reasonable one: "could you please provide one example?" This post provides that example.

 

First of all the existing science behind: in my opinion, the main reference regarding the equivalence problem is at the paper "A Review of the Geometrical Equivalence of Metrics in General Relativity", General Relativity and Gravitation, Vol. 12, No. 9, 1980, by A. Karlhede (University of Stockholm). This approach got refined later by others and, generally speaking, it is currently know as the Cartan-Karlhede method, summarized in chapter 9.2 of the book Exact Solutions to Einstein Field Equations. whose solutions were all digitized within the Physics and DifferentialGeometry packages for Maple 2016. This method of Chapter 9.2 (see also Tetrads and Weyl scalars in canonical form, Mapleprimes post), however, is not the only approach to the problem, and sometimes simpler methods can handle the problem faster, or just in simpler forms.

 

The example worked out below is actually the example from Karlhede's paper just mentioned, on pages 704 - 706: "Show that the Schwarzschild metric and its form written in terms of isotropic spherical coordinates are equivalent, and derive the transformation that relates them". Because this problem happens to be simple for nowadays computer algebra, below I also tackle it modified, slightly more difficult variants of it. The approach shown works for more complicated cases as well.

 

Below we tackle Karlhede's paper-problem using: one PDEtools command, the Physics:-TransformCoordinates, the Physics:-Weyl command to compute the Weyl scalars and the Physics:-Tetrads:-PetrovType to see the Petrov type of the metrics involved. The transformation resolving the equivalence is explicitly derived.

 

Start loading the Physics and Tetrads package. To reproduce the computations below, as usual, update your Physics library with the one available for download at the Maplesoft R&D Physics webpage

with(Physics); with(Tetrads); Setup(auto = true, tetradmetric = null, signature = `+---`)

`Setting lowercaselatin letters to represent tetrad indices `

 

0, "%1 is not a command in the %2 package", Tetrads, Physics

 

0, "%1 is not a command in the %2 package", Tetrads, Physics

 

`* Partial match of  'auto' against keyword 'automaticsimplification'`

 

[automaticsimplification = true, signature = `+ - - -`, tetradmetric = {(1, 2) = 1, (3, 4) = -1}]

(1)

To formulate the problem, set first some symbols to represent the changed metric, changed mass and changed coordinates - no mathematics at this point

gt, mt, tt, rt, thetat, phit := `𝔤`, `𝔪`, `𝔱`, `𝔯`, `ϑ`, `ϕ`

`𝔤`, `𝔪`, `𝔱`, `𝔯`, vartheta, varphi

(2)

Set now a new coordinates system, call it Y, involving the new coordinates (in the paper they are represented with a tilde on top of the letters)

Coordinates(Y = [tt, rt, thetat, phit])

`Default differentiation variables for d_, D_ and dAlembertian are: `*{Y = (`𝔱`, `𝔯`, `ϑ`, `ϕ`)}

 

`Systems of spacetime Coordinates are: `*{Y = (`𝔱`, `𝔯`, `ϑ`, `ϕ`)}

 

{Y}

(3)

According to eq.(7.6) of the paper, the line element of Schwarzschild solution in isotropic spherical coordinates is given by

`#msup(mi("ds"),mn("2"))` := ((1-mt/(2*rt))/(1+mt/(2*rt)))^2*d_(tt)^2-(1+mt/(2*rt))^4*(d_(rt)^2+rt^2*d_(thetat)^2+rt^2*sin(thetat)^2*d_(phit)^2)

(-2*`𝔯`+`𝔪`)^2*Physics:-d_(`𝔱`)^2/(2*`𝔯`+`𝔪`)^2-(1/16)*(2*`𝔯`+`𝔪`)^4*(Physics:-d_(`𝔯`)^2+`𝔯`^2*Physics:-d_(vartheta)^2+`𝔯`^2*sin(vartheta)^2*Physics:-d_(varphi)^2)/`𝔯`^4

(4)

Set this to be the metric

Setup(metric = `#msup(mi("ds"),mn("2"))`)

Check it out

g_[]

Physics:-g_[mu, nu] = Matrix(%id = 18446744078306516254)

(5)

In connection with the transformation used further below, compute now the Petrov type and the Weyl scalars for this metric, just to have an idea of what is behind this metric.

PetrovType()

"D"

(6)

Weyl[scalars]

psi__0 = 0, psi__1 = 0, psi__2 = -64*`𝔯`^3*`𝔪`/(2*`𝔯`+`𝔪`)^6, psi__3 = 0, psi__4 = 0

(7)

We see that the Weyl scalars are already in canonical form (see post in Mapleprimes about canonical forms): only `&Psi;__2` <> 0 and the important thing: it depends on only one coordinate, `&rfr;` .

 

Now: we want to see if this metric (5) is equivalent to Schwarzschild metric in standard spherical coordinates

g_[sc]

`Systems of spacetime Coordinates are: `*{X = (t, r, theta, phi), Y = (`&tfr;`, `&rfr;`, `&vartheta;`, `&varphi;`)}

 

`Default differentiation variables for d_, D_ and dAlembertian are: `*{X = (t, r, theta, phi)}

 

`The Schwarzschild metric in coordinates `[t, r, theta, phi]

 

`Parameters: `[m]

 

Physics:-g_[mu, nu] = Matrix(%id = 18446744078795590102)

(8)

The equivalence we want to resolve is regarding an arbitrary relationship `&mfr;`(m)between the masses used in (5) and (8) and a generic change of variables from X to Y

TR := {phi = Phi(Y), r = R(Y), t = Tau(Y), theta = Theta(Y)}

{phi = Phi(Y), r = R(Y), t = Tau(Y), theta = Theta(Y)}

(9)

Using a differential equation mindset, the formulation of the equivalence between (8) and (5) under the transformation (9) is actually simple: change variables in (8), using (9) and the Physics:-TransformCoordinates command (this is the command that changes variables in tensorial expressions), then equate the result to (5), then try to solve the problem for the unknowns `&mfr;`(m), Phi(Y), R(Y), Theta(Y) and Tau(Y).

 

We note at this point, however, that the Weyl scalars for Schwarzschild metric in this standard form (8) are also in canonical form of Petrov type D and also depend on only one variable, r 

PetrovType()

"D"

(10)

Weyl[scalars]

psi__0 = 0, psi__1 = 0, psi__2 = -m/r^3, psi__3 = 0, psi__4 = 0

(11)

The fact that the Weyl scalars in both cases ((7) and (11)) are in canonical form (only `&Psi;__2` <> 0 ) and in both cases this scalar depends on only one coordinate is already an indicator that the transformation involved changes only one variable in terms of the other one. So one could just search for a transformation of the form r = R(`&rfr;`) and resolve the problem instantly. Still, to make the problem slightly more general, consider instead a generic transformation for r in terms of all of Y = (`&tfr;`, `&rfr;`, `&vartheta;`, `&varphi;`)

tr := r = R(Y)

r = R(Y)

(12)

PDEtools:-declare(r = R(Y))

R(`&tfr;`, `&rfr;`, vartheta, varphi)*`will now be displayed as`*R

(13)

Transform the  coordinates in the metric (because of having used PDEtools:-declare, derivatives of the unknowns R are displayed indexed, for compact notation)

TransformCoordinates(tr, g_[mu, nu])

Matrix(%id = 18446744078873927542)

(14)

Proceed equating (14) to (5) to obtain a set of equations that entirely formulates the problem

"convert(rhs(?)=? ,setofequations)"

{0 = (diff(R(Y), `&rfr;`))*(diff(R(Y), `&tfr;`))*R(Y)/(-R(Y)+2*m), 0 = (diff(R(Y), varphi))*(diff(R(Y), `&rfr;`))*R(Y)/(-R(Y)+2*m), 0 = (diff(R(Y), varphi))*(diff(R(Y), `&tfr;`))*R(Y)/(-R(Y)+2*m), 0 = (diff(R(Y), varphi))*(diff(R(Y), vartheta))*R(Y)/(-R(Y)+2*m), 0 = (diff(R(Y), vartheta))*(diff(R(Y), `&rfr;`))*R(Y)/(-R(Y)+2*m), 0 = (diff(R(Y), vartheta))*(diff(R(Y), `&tfr;`))*R(Y)/(-R(Y)+2*m), (-2*`&rfr;`+`&mfr;`)^2/(2*`&rfr;`+`&mfr;`)^2 = ((diff(R(Y), `&tfr;`))^2*R(Y)^2-4*(-(1/2)*R(Y)+m)^2)/(R(Y)*(-R(Y)+2*m)), -(1/16)*(2*`&rfr;`+`&mfr;`)^4/`&rfr;`^4 = (diff(R(Y), `&rfr;`))^2*R(Y)/(-R(Y)+2*m), -(1/16)*(2*`&rfr;`+`&mfr;`)^4/`&rfr;`^2 = -(diff(R(Y), vartheta))^2*R(Y)/(R(Y)-2*m)-R(Y)^2, -(1/16)*(2*`&rfr;`+`&mfr;`)^4*sin(vartheta)^2/`&rfr;`^2 = 2*((1/2)*(diff(R(Y), varphi))^2+(cos(vartheta)-1)*R(Y)*(cos(vartheta)+1)*(-(1/2)*R(Y)+m))*R(Y)/(-R(Y)+2*m)}

(15)

This problem, shown in Karlhede's paper as the example of the approach he summarized, is solvable using the differential equation commands of PDEtools (in this case casesplit) in one go and no time, obtaining the same solution shown in the paper with equation number (7.10), the problem actually admits two solutions

PDEtools:-casesplit({0 = (diff(R(Y), `&rfr;`))*(diff(R(Y), `&tfr;`))*R(Y)/(-R(Y)+2*m), 0 = (diff(R(Y), varphi))*(diff(R(Y), `&rfr;`))*R(Y)/(-R(Y)+2*m), 0 = (diff(R(Y), varphi))*(diff(R(Y), `&tfr;`))*R(Y)/(-R(Y)+2*m), 0 = (diff(R(Y), varphi))*(diff(R(Y), vartheta))*R(Y)/(-R(Y)+2*m), 0 = (diff(R(Y), vartheta))*(diff(R(Y), `&rfr;`))*R(Y)/(-R(Y)+2*m), 0 = (diff(R(Y), vartheta))*(diff(R(Y), `&tfr;`))*R(Y)/(-R(Y)+2*m), (-2*`&rfr;`+`&mfr;`)^2/(2*`&rfr;`+`&mfr;`)^2 = ((diff(R(Y), `&tfr;`))^2*R(Y)^2-4*(-(1/2)*R(Y)+m)^2)/(R(Y)*(-R(Y)+2*m)), -(1/16)*(2*`&rfr;`+`&mfr;`)^4/`&rfr;`^4 = (diff(R(Y), `&rfr;`))^2*R(Y)/(-R(Y)+2*m), -(1/16)*(2*`&rfr;`+`&mfr;`)^4/`&rfr;`^2 = -(diff(R(Y), vartheta))^2*R(Y)/(R(Y)-2*m)-R(Y)^2, -(1/16)*(2*`&rfr;`+`&mfr;`)^4*sin(vartheta)^2/`&rfr;`^2 = 2*((1/2)*(diff(R(Y), varphi))^2+(cos(vartheta)-1)*R(Y)*(cos(vartheta)+1)*(-(1/2)*R(Y)+m))*R(Y)/(-R(Y)+2*m)}, [R, mt])

`casesplit/ans`([R(Y) = -(1/4)*(m-2*`&rfr;`)^2/`&rfr;`, `&mfr;` = -m], []), `casesplit/ans`([R(Y) = (1/4)*(2*`&rfr;`+m)^2/`&rfr;`, `&mfr;` = m], [])

(16)

By all means this does not mean this differential equation approach is better than the general approach mentioned in the paper (also in section 9.2 of the Exact Solutions book). This presentation above only makes the point of the paragraph mentioned at the beginning of this worksheet "... [in Maple 2016] you can also formulate and, depending on the the metrics also resolve, the equivalence problem; that is: to answer whether or not, given two metrics, they can be obtained from each other by a transformation of coordinates, as well as compute the transformation." 

 

In any case this problem above is rather easy for the computer. Consider a slightly more difficult problem, where `&mfr;` <> m. For example:

"subs(mt = 1/(mt^(2)),?)"

Physics:-g_[mu, nu] = Matrix(%id = 18446744078854733566)

(17)

Tackle now the same problem

"convert(rhs(?)=? ,setofequations)"

{0 = (diff(R(Y), `&rfr;`))*(diff(R(Y), `&tfr;`))*R(Y)/(-R(Y)+2*m), 0 = (diff(R(Y), varphi))*(diff(R(Y), `&rfr;`))*R(Y)/(-R(Y)+2*m), 0 = (diff(R(Y), varphi))*(diff(R(Y), `&tfr;`))*R(Y)/(-R(Y)+2*m), 0 = (diff(R(Y), varphi))*(diff(R(Y), vartheta))*R(Y)/(-R(Y)+2*m), 0 = (diff(R(Y), vartheta))*(diff(R(Y), `&rfr;`))*R(Y)/(-R(Y)+2*m), 0 = (diff(R(Y), vartheta))*(diff(R(Y), `&tfr;`))*R(Y)/(-R(Y)+2*m), (-2*`&rfr;`+1/`&mfr;`^2)^2/(2*`&rfr;`+1/`&mfr;`^2)^2 = ((diff(R(Y), `&tfr;`))^2*R(Y)^2-4*(-(1/2)*R(Y)+m)^2)/(R(Y)*(-R(Y)+2*m)), -(1/16)*(2*`&rfr;`+1/`&mfr;`^2)^4/`&rfr;`^4 = (diff(R(Y), `&rfr;`))^2*R(Y)/(-R(Y)+2*m), -(1/16)*(2*`&rfr;`+1/`&mfr;`^2)^4/`&rfr;`^2 = -(diff(R(Y), vartheta))^2*R(Y)/(R(Y)-2*m)-R(Y)^2, -(1/16)*(2*`&rfr;`+1/`&mfr;`^2)^4*sin(vartheta)^2/`&rfr;`^2 = 2*((1/2)*(diff(R(Y), varphi))^2+(cos(vartheta)-1)*R(Y)*(cos(vartheta)+1)*(-(1/2)*R(Y)+m))*R(Y)/(-R(Y)+2*m)}

(18)

The solutions to the equivalence between (17) and (5) are then given by

PDEtools:-casesplit({0 = (diff(R(Y), `&rfr;`))*(diff(R(Y), `&tfr;`))*R(Y)/(-R(Y)+2*m), 0 = (diff(R(Y), varphi))*(diff(R(Y), `&rfr;`))*R(Y)/(-R(Y)+2*m), 0 = (diff(R(Y), varphi))*(diff(R(Y), `&tfr;`))*R(Y)/(-R(Y)+2*m), 0 = (diff(R(Y), varphi))*(diff(R(Y), vartheta))*R(Y)/(-R(Y)+2*m), 0 = (diff(R(Y), vartheta))*(diff(R(Y), `&rfr;`))*R(Y)/(-R(Y)+2*m), 0 = (diff(R(Y), vartheta))*(diff(R(Y), `&tfr;`))*R(Y)/(-R(Y)+2*m), (-2*`&rfr;`+1/`&mfr;`^2)^2/(2*`&rfr;`+1/`&mfr;`^2)^2 = ((diff(R(Y), `&tfr;`))^2*R(Y)^2-4*(-(1/2)*R(Y)+m)^2)/(R(Y)*(-R(Y)+2*m)), -(1/16)*(2*`&rfr;`+1/`&mfr;`^2)^4/`&rfr;`^4 = (diff(R(Y), `&rfr;`))^2*R(Y)/(-R(Y)+2*m), -(1/16)*(2*`&rfr;`+1/`&mfr;`^2)^4/`&rfr;`^2 = -(diff(R(Y), vartheta))^2*R(Y)/(R(Y)-2*m)-R(Y)^2, -(1/16)*(2*`&rfr;`+1/`&mfr;`^2)^4*sin(vartheta)^2/`&rfr;`^2 = 2*((1/2)*(diff(R(Y), varphi))^2+(cos(vartheta)-1)*R(Y)*(cos(vartheta)+1)*(-(1/2)*R(Y)+m))*R(Y)/(-R(Y)+2*m)}, [R, mt])

`casesplit/ans`([R(Y) = -(1/4)*(m-2*`&rfr;`)^2/`&rfr;`, `&mfr;`^2 = -1/m], [`&mfr;` <> 0]), `casesplit/ans`([R(Y) = (1/4)*(2*`&rfr;`+m)^2/`&rfr;`, `&mfr;`^2 = 1/m], [`&mfr;` <> 0])

(19)

Moreover, despite that the Weyl scalars suggest that a transformation of only one variable is sufficient to solve the problem, one could also consider a more general transformation, of more variables. Provided we exclude theta (because there is cos(theta) around and that would take us to solve differential equations for Theta(theta), that involve things like cos(Theta(theta))), and also to speed up matters let's remove the change in phi, consider an arbitrary change in r and t

TR := select(has, {phi = Phi(Y), r = R(Y), t = Tau(Y), theta = Theta(Y)}, {r, t})

{r = R(Y), t = Tau(Y)}

(20)

PDEtools:-declare({r = R(Y), t = Tau(Y)})

R(`&tfr;`, `&rfr;`, vartheta, varphi)*`will now be displayed as`*R

 

Tau(`&tfr;`, `&rfr;`, vartheta, varphi)*`will now be displayed as`*Tau

(21)

So our transformation now involve two arbitrary variables, each one depending on all the four coordinates, and a more complicated function `&mfr;`(m). Change variables (because of having used PDEtools:-declare, derivatives of the unknowns R and Tau are displayed indexed, for compact notation)

TransformCoordinates(TR, g_[mu, nu])

Matrix(%id = 18446744078309268046)

(22)

Construct the set of Partial Differential Equations to be tackled

"convert(rhs(?)=?,setofequations)"

{0 = (-4*(diff(Tau(Y), `&rfr;`))*(-(1/2)*R(Y)+m)^2*(diff(Tau(Y), `&tfr;`))+(diff(R(Y), `&rfr;`))*(diff(R(Y), `&tfr;`))*R(Y)^2)/(R(Y)*(-R(Y)+2*m)), 0 = (-4*(diff(Tau(Y), varphi))*(-(1/2)*R(Y)+m)^2*(diff(Tau(Y), `&rfr;`))+(diff(R(Y), varphi))*(diff(R(Y), `&rfr;`))*R(Y)^2)/(R(Y)*(-R(Y)+2*m)), 0 = (-4*(diff(Tau(Y), varphi))*(-(1/2)*R(Y)+m)^2*(diff(Tau(Y), `&tfr;`))+(diff(R(Y), varphi))*(diff(R(Y), `&tfr;`))*R(Y)^2)/(R(Y)*(-R(Y)+2*m)), 0 = (-4*(diff(Tau(Y), varphi))*(-(1/2)*R(Y)+m)^2*(diff(Tau(Y), vartheta))+(diff(R(Y), varphi))*(diff(R(Y), vartheta))*R(Y)^2)/(R(Y)*(-R(Y)+2*m)), 0 = (-4*(diff(Tau(Y), vartheta))*(-(1/2)*R(Y)+m)^2*(diff(Tau(Y), `&rfr;`))+(diff(R(Y), vartheta))*(diff(R(Y), `&rfr;`))*R(Y)^2)/(R(Y)*(-R(Y)+2*m)), 0 = (-4*(diff(Tau(Y), vartheta))*(-(1/2)*R(Y)+m)^2*(diff(Tau(Y), `&tfr;`))+(diff(R(Y), vartheta))*(diff(R(Y), `&tfr;`))*R(Y)^2)/(R(Y)*(-R(Y)+2*m)), (-2*`&rfr;`+1/`&mfr;`^2)^2/(2*`&rfr;`+1/`&mfr;`^2)^2 = (-4*(-(1/2)*R(Y)+m)^2*(diff(Tau(Y), `&tfr;`))^2+(diff(R(Y), `&tfr;`))^2*R(Y)^2)/(R(Y)*(-R(Y)+2*m)), -(1/16)*(2*`&rfr;`+1/`&mfr;`^2)^4/`&rfr;`^4 = (-4*(-(1/2)*R(Y)+m)^2*(diff(Tau(Y), `&rfr;`))^2+(diff(R(Y), `&rfr;`))^2*R(Y)^2)/(R(Y)*(-R(Y)+2*m)), -(1/16)*(2*`&rfr;`+1/`&mfr;`^2)^4/`&rfr;`^2 = (diff(Tau(Y), vartheta))^2*(R(Y)-2*m)/R(Y)-(diff(R(Y), vartheta))^2*R(Y)/(R(Y)-2*m)-R(Y)^2, -(1/16)*(2*`&rfr;`+1/`&mfr;`^2)^4*sin(vartheta)^2/`&rfr;`^2 = (-4*(-(1/2)*R(Y)+m)^2*(diff(Tau(Y), varphi))^2+2*((1/2)*(diff(R(Y), varphi))^2+(cos(vartheta)-1)*R(Y)*(cos(vartheta)+1)*(-(1/2)*R(Y)+m))*R(Y)^2)/(R(Y)*(-R(Y)+2*m))}

(23)

Solve the problem running a differential elimination (actually without solving any differential equations): there are more than two solutions

sol := PDEtools:-casesplit({0 = (-4*(diff(Tau(Y), `&rfr;`))*(-(1/2)*R(Y)+m)^2*(diff(Tau(Y), `&tfr;`))+(diff(R(Y), `&rfr;`))*(diff(R(Y), `&tfr;`))*R(Y)^2)/(R(Y)*(-R(Y)+2*m)), 0 = (-4*(diff(Tau(Y), varphi))*(-(1/2)*R(Y)+m)^2*(diff(Tau(Y), `&rfr;`))+(diff(R(Y), varphi))*(diff(R(Y), `&rfr;`))*R(Y)^2)/(R(Y)*(-R(Y)+2*m)), 0 = (-4*(diff(Tau(Y), varphi))*(-(1/2)*R(Y)+m)^2*(diff(Tau(Y), `&tfr;`))+(diff(R(Y), varphi))*(diff(R(Y), `&tfr;`))*R(Y)^2)/(R(Y)*(-R(Y)+2*m)), 0 = (-4*(diff(Tau(Y), varphi))*(-(1/2)*R(Y)+m)^2*(diff(Tau(Y), vartheta))+(diff(R(Y), varphi))*(diff(R(Y), vartheta))*R(Y)^2)/(R(Y)*(-R(Y)+2*m)), 0 = (-4*(diff(Tau(Y), vartheta))*(-(1/2)*R(Y)+m)^2*(diff(Tau(Y), `&rfr;`))+(diff(R(Y), vartheta))*(diff(R(Y), `&rfr;`))*R(Y)^2)/(R(Y)*(-R(Y)+2*m)), 0 = (-4*(diff(Tau(Y), vartheta))*(-(1/2)*R(Y)+m)^2*(diff(Tau(Y), `&tfr;`))+(diff(R(Y), vartheta))*(diff(R(Y), `&tfr;`))*R(Y)^2)/(R(Y)*(-R(Y)+2*m)), (-2*`&rfr;`+1/`&mfr;`^2)^2/(2*`&rfr;`+1/`&mfr;`^2)^2 = (-4*(-(1/2)*R(Y)+m)^2*(diff(Tau(Y), `&tfr;`))^2+(diff(R(Y), `&tfr;`))^2*R(Y)^2)/(R(Y)*(-R(Y)+2*m)), -(1/16)*(2*`&rfr;`+1/`&mfr;`^2)^4/`&rfr;`^4 = (-4*(-(1/2)*R(Y)+m)^2*(diff(Tau(Y), `&rfr;`))^2+(diff(R(Y), `&rfr;`))^2*R(Y)^2)/(R(Y)*(-R(Y)+2*m)), -(1/16)*(2*`&rfr;`+1/`&mfr;`^2)^4/`&rfr;`^2 = (diff(Tau(Y), vartheta))^2*(R(Y)-2*m)/R(Y)-(diff(R(Y), vartheta))^2*R(Y)/(R(Y)-2*m)-R(Y)^2, -(1/16)*(2*`&rfr;`+1/`&mfr;`^2)^4*sin(vartheta)^2/`&rfr;`^2 = (-4*(-(1/2)*R(Y)+m)^2*(diff(Tau(Y), varphi))^2+2*((1/2)*(diff(R(Y), varphi))^2+(cos(vartheta)-1)*R(Y)*(cos(vartheta)+1)*(-(1/2)*R(Y)+m))*R(Y)^2)/(R(Y)*(-R(Y)+2*m))}, [R, mt])

`casesplit/ans`([R(Y) = (1/4)*(2*`&rfr;`+m)^2/`&rfr;`, `&mfr;`^2 = 1/m, diff(Tau(Y), `&tfr;`) = -1, diff(Tau(Y), `&rfr;`) = 0, diff(Tau(Y), vartheta) = 0, diff(Tau(Y), varphi) = 0], [`&mfr;` <> 0]), `casesplit/ans`([R(Y) = (1/4)*(2*`&rfr;`+m)^2/`&rfr;`, `&mfr;`^2 = 1/m, diff(Tau(Y), `&tfr;`) = 1, diff(Tau(Y), `&rfr;`) = 0, diff(Tau(Y), vartheta) = 0, diff(Tau(Y), varphi) = 0], [`&mfr;` <> 0]), `casesplit/ans`([R(Y) = -(1/4)*(m-2*`&rfr;`)^2/`&rfr;`, `&mfr;`^2 = -1/m, diff(Tau(Y), `&tfr;`) = -1, diff(Tau(Y), `&rfr;`) = 0, diff(Tau(Y), vartheta) = 0, diff(Tau(Y), varphi) = 0], [`&mfr;` <> 0]), `casesplit/ans`([R(Y) = -(1/4)*(m-2*`&rfr;`)^2/`&rfr;`, `&mfr;`^2 = -1/m, diff(Tau(Y), `&tfr;`) = 1, diff(Tau(Y), `&rfr;`) = 0, diff(Tau(Y), vartheta) = 0, diff(Tau(Y), varphi) = 0], [`&mfr;` <> 0])

(24)

Consider for instance the first one

sol[1]

`casesplit/ans`([R(Y) = (1/4)*(2*`&rfr;`+m)^2/`&rfr;`, `&mfr;`^2 = 1/m, diff(Tau(Y), `&tfr;`) = -1, diff(Tau(Y), `&rfr;`) = 0, diff(Tau(Y), vartheta) = 0, diff(Tau(Y), varphi) = 0], [`&mfr;` <> 0])

(25)

Compute the actual solution behind this case :

pdsolve(`casesplit/ans`([R(Y) = (1/4)*(2*`&rfr;`+m)^2/`&rfr;`, `&mfr;`^2 = 1/m, diff(Tau(Y), `&tfr;`) = -1, diff(Tau(Y), `&rfr;`) = 0, diff(Tau(Y), vartheta) = 0, diff(Tau(Y), varphi) = 0], [`&mfr;` <> 0]), {R, Tau, mt})

{`&mfr;` = -1/m^(1/2), R(Y) = (1/4)*(2*`&rfr;`+m)^2/`&rfr;`, Tau(Y) = -`&tfr;`+_C1}, {`&mfr;` = 1/m^(1/2), R(Y) = (1/4)*(2*`&rfr;`+m)^2/`&rfr;`, Tau(Y) = -`&tfr;`+_C1}

(26)

The fact that the time t appears defined in terms of the transformed time Tau(Y) = -`&tfr;`+_C1 involving an arbitrary constant is expected: the time does not enter the metric, it only enters through derivatives of Tau(Y) entering the Jacobian of the transformation used to change variables in tensorial expressions (the metric) in (22).

 

Summary: the approach shown above, based on formulating the problem for the transformation functions of the equivalence and solving for them the differential equations using the commands in PDEtools, after restricting the generality of the transformation functions by looking at the form of the Weyl scalars, works well for other cases too, specially now that, in Maple 2016, the Weyl scalars can be expressed also in canonical form in one go (see previous Mapleprimes post on "Tetrads and Weyl scalars in canonical form").  Also important: in Maple 2016 it is present the functionality necessary to implement the approach of section 9.2 of the Exact solutions book as well.

  

 

 

Download Equivalence_-_Schwarzschild.mw

Edgardo S. Cheb-Terrab
Physics, Differential Equations and Mathematical Functions, Maplesoft

Tetrads and Weyl scalars in canonical form

 

The material below is about a new development that didn't arrive in time for the launch of Maple 2016 (March) and that complements in a relevant way the ones introduced in Physics in Maple 2016. It is at topic in general relativity, the computation of a canonical form of a tetrad, so that, generally speaking (skipping a technical description) the Weyl scalars are fixed as much as possible (either equal to 0 or to 1) regarding transformations that leave invariant the tetrad metric in a tetrad system of references. Bringing a tetrad in canonical form is a relevant step in the tackling of the equivalence problem between two spacetime metrics (Mapleprimes post), and it is relevant in connection with the digitizing in Maple 2016 of the database of solutions to Einstein's equations of the book Exact Solutions to Einstein Field Equations.

The reference for this development is the book "General Relativity, an Einstein century survey", edited by S.W. Hawking (Cambridge) and W. Israel (U. Alberta, Canada), specifically Chapter 7 written by S. Chandrasekhar, and more specifically exploring what is said in page 388 about the Petrov classification.


A canonical form for the tetrad and Weyl scalars admits alternate forms; the implementation is as implicit in page 388:

 

`&Psi;__0`

`&Psi;__1`

`&Psi;__2`

`&Psi;__3`

`&Psi;__4`

Residual invariance

Petrov type I

0

"<>0"

"<>0"

1

0

none

Petrov type II

0

0

"<>0"

1

0

none

Petrov type III

0

0

0

1

0

none

Petrov type D

0

0

"<>0"

0

0

`&Psi;__2`  remains invariant under rotations of Class III

Petrov type N

0

0

0

0

1

`&Psi;__4` remains invariant under rotations of Class II

 

The transformations (rotations of the tetrad system of references) used are of Class I, II and III as defined in Chandrasekar's chapter - equations (7.79) in page 384, (7.83) and (7.84) in page 385. Transformations of Class I can be performed with the command Physics:-Tetrads:-TransformTetrad using the optional argument nullrotationwithfixedl_, of Class II using nullrotationwithfixedn_ and of Class III by calling TransformTetrad(spatialrotationsm_mb_plan, boostsn_l_plane), so with the two optional arguments simultaneously.

 

In this development, a new optional argument, canonicalform got implemented to TransformTetrad so that the whole sequence of three transformations of Classes I, II and III is performed automatically, in one go. Regarding the canonical form of the tetrad, the main idea is that from the change in the Weyl scalars one can derive the parameters entering tetrad transformations that result in a canonical form of the tetrad. 

 

with(Physics); with(Tetrads)

`Setting lowercaselatin letters to represent tetrad indices `

 

0, "%1 is not a command in the %2 package", Tetrads, Physics

 

0, "%1 is not a command in the %2 package", Tetrads, Physics

 

[IsTetrad, NullTetrad, OrthonormalTetrad, PetrovType, SimplifyTetrad, TransformTetrad, e_, eta_, gamma_, l_, lambda_, m_, mb_, n_]

(1)

(Note the Tetrads:-PetrovType command, unfinished in the first release of Maple 2016.) To run the following computations you need to update your Physics library to the latest version from the Maplesoft R&D Physics webpage, so with this datestamp or newer:

Physics:-Version()

"/Users/ecterrab/Maple/lib/Physics2016.mla", `2016, April 20, 12:56 hours`

(2)

An Example of Petrov type I

There are six Petrov types: I, II, III, D, N and O. Start with a spacetime metric of Petrov type "I"  (the numbers always refer to the equation number in the "Exact solutions to Einstein's field equations" textbook)

g_[[12, 21, 1]]

`Systems of spacetime Coordinates are: `*{X = (t, x, y, phi)}

 

`Default differentiation variables for d_, D_ and dAlembertian are: `*{X = (t, x, y, phi)}

 

`The McLenaghan, Tariq (1975), Tupper (1976) metric in coordinates `[t, x, y, phi]

 

`Parameters: `[a, k, kappa0]

 

"`Comments: `_k parametrizes the most general electromagnetic invariant with respect to the last 3 Killing vectors"

 

`Resetting the signature of spacetime from "+ - - -" to \`- + + +\` in order to match the signature in the database of metrics:`

 

g[mu, nu] = (Matrix(4, 4, {(1, 1) = -1, (1, 2) = 0, (1, 3) = 0, (1, 4) = 2*y, (2, 1) = 0, (2, 2) = a^2/x^2, (2, 3) = 0, (2, 4) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = a^2/x^2, (3, 4) = 0, (4, 1) = 2*y, (4, 2) = 0, (4, 3) = 0, (4, 4) = x^2-4*y^2}))

(3)

The Weyl scalars

Weyl[scalars]

psi__0 = (1/4)*((4*I)*x^3*abs(x)^3-abs(x)^6+abs(x)^4*x^2+abs(x)^2*x^4-x^6)/(a^2*abs(x)^4*x^2), psi__1 = 0, psi__2 = -(1/4)*(x^2+abs(x)^2)*(x^4+abs(x)^4)/(a^2*abs(x)^4*x^2), psi__3 = 0, psi__4 = (1/4)*((4*I)*x^3*abs(x)^3-abs(x)^6+abs(x)^4*x^2+abs(x)^2*x^4-x^6)/(a^2*abs(x)^4*x^2)

(4)

... there is abs around. Let's assume everything is positive to simplify formulas, use Capital Physics:-Assume  (the lower case assume  command redefines the assumed variables, so it is not compatible with Physics, DifferentialGeometry and VectorCalculus among others).

Assume(x > 0, y > 0, a > 0)

{a::(RealRange(Open(0), infinity))}, {x::(RealRange(Open(0), infinity))}, {y::(RealRange(Open(0), infinity))}

(5)

The scalars are now simpler, although still not in "canonical form" because `&Psi;__4` <> 0 and `&Psi;__3` <> 1.

Weyl[scalars]

psi__0 = I/a^2, psi__1 = 0, psi__2 = -1/a^2, psi__3 = 0, psi__4 = I/a^2

(6)

The Petrov type

PetrovType()

"I"

(7)

The  call to Tetrads:-TransformTetrad two lines below transforms the current tetrad ,

e_[]

Physics:-Tetrads:-e_[a, mu] = Matrix(%id = 18446744078512745638)

(8)

into another tetrad such that the Weyl scalars are in canonical form, which for Petrov "I" type happens when `&Psi;__0` = 0, `&Psi;__4` = 0 and `&Psi;__3` = 1.

TransformTetrad(canonicalform)

Matrix(%id = 18446744078500192254)

(9)

Despite the fact that the result is a much more complicated tetrad, this is an amazing result in that the resulting Weyl scalars are all fixed (see below).  Let's first verify that this is indeed a tetrad, and that now the Weyl scalars are in canonical form

"IsTetrad(?)"

`Type of tetrad: null `

 

true

(10)

Set (9) to be the tetrad in use and recompute the Weyl scalars

"Setup(tetrad = ?):"

Inded we now have `&Psi;__0` = 0, `&Psi;__4` = 0 and `&Psi;__3` = 1 

simplify([Weyl[scalars]])

[psi__0 = 0, psi__1 = (-1/2-(3/2)*I)/a^4, psi__2 = (-1+I)/a^2, psi__3 = 1, psi__4 = 0]

(11)

So Weyl scalars computed after setting the canonical tetrad (9) to be the tetrad in use are in canonical form. Great! NOTE: computing the canonicalWeyl scalars is not really the difficult part, and within the code, these scalars (11) are computed before arriving at the tetrad (9). What is really difficult (from the point of view of computational complexity and simplifications) is to compute the actual canonical form of the tetrad (9).

 

An Example of Petrov type II

Consider this other solution to Einstein's equation (again, the numbers in g_[[24,37,7]] always refer to the equation number in the "Exact solutions to Einstein's field equations" textbook)

g_[[24, 37, 7]]

`Systems of spacetime Coordinates are: `*{X = (u, v, x, y)}

 

`Default differentiation variables for d_, D_ and dAlembertian are: `*{X = (u, v, x, y)}

 

`The Stephani metric in coordinates `[u, v, x, y]

 

`Parameters: `[f(x), a, Psi1(u, x, y)]

 

"`Comments: `Case 6 from Table 24.1:_Psi1(u,x,y): diff(_Psi1(u,x,y),x,x)+diff(_Psi1(u,x,y),y,y)=0, diff(x*diff(_M(u,x,y),x),x)+x*diff(_M(u,x,y),y,y)=_kappa0*(diff(_Psi(u,x,y),x)^2+diff(_Psi(u,x,y),y)^2)"

 

g[mu, nu] = (Matrix(4, 4, {(1, 1) = -2*x*(f(x)+y*a), (1, 2) = -x, (1, 3) = 0, (1, 4) = 0, (2, 2) = 0, (2, 3) = 0, (2, 4) = 0, (3, 3) = 1/x^(1/2), (3, 4) = 0, (4, 4) = 1/x^(1/2)}, storage = triangular[upper], shape = [symmetric]))

(12)

Check the Petrov type

PetrovType()

"II"

(13)

The starting tetrad

e_[]

Physics:-Tetrads:-e_[a, mu] = Matrix(%id = 18446744078835577550)

(14)

results in Weyl scalars not in canonical form:

Weyl[scalars]

psi__0 = 0, psi__1 = 0, psi__2 = (1/8)/x^(3/2), psi__3 = 0, psi__4 = -((3*I)*a-2*x*(diff(diff(f(x), x), x))-3*(diff(f(x), x)))/(x^(1/2)*(4*y*a+4*f(x)))

(15)

For Petrov type "II", the canonical form is as for type "I" but in addition `&Psi;__1` = 0. Again let's assume positive, not necessary, but to get simpler formulas around

Assume(f(x) > 0, x > 0, y > 0, a > 0)

{a::(RealRange(Open(0), infinity))}, {x::(RealRange(Open(0), infinity)), (-f(x))::(RealRange(-infinity, Open(0))), (f(x))::(RealRange(Open(0), infinity))}, {y::(RealRange(Open(0), infinity))}

(16)

Compute now a canonical form for the tetrad, to be used instead of (14)

TransformTetrad(canonicalform)

Matrix(%id = 18446744078835949430)

(17)

Set this tetrad and check the Weyl scalars again

"Setup(tetrad = ?):"

Weyl[scalars]

psi__0 = 0, psi__1 = 0, psi__2 = (1/8)/x^(3/2), psi__3 = 1, psi__4 = 0

(18)

This result (18) is fantastic. Compare these Weyl scalars with the ones (15) before transforming the tetrad.

 

An Example of Petrov type III

g_[[12, 35, 1]]

`Systems of spacetime Coordinates are: `*{X = (u, x, y, z)}

 

`Default differentiation variables for d_, D_ and dAlembertian are: `*{X = (u, x, y, z)}

 

`The Kaigorodov (1962), Cahen (1964), Siklos (1981), Ozsvath (1987) metric in coordinates `[u, x, y, z]

 

`Parameters: `[Lambda]

 

g[mu, nu] = (Matrix(4, 4, {(1, 1) = 0, (1, 2) = exp(-2*z), (1, 3) = 0, (1, 4) = 0, (2, 2) = exp(4*z), (2, 3) = 2*exp(z), (2, 4) = 0, (3, 3) = 2*exp(-2*z), (3, 4) = 0, (4, 4) = 3/abs(Lambda)}, storage = triangular[upper], shape = [symmetric]))

(19)

Assume(z > 0, Lambda > 0)

{Lambda::(RealRange(Open(0), infinity))}, {z::(RealRange(Open(0), infinity))}

(20)

The Petrov type and the original tetrad

PetrovType()

"III"

(21)

e_[]

Physics:-Tetrads:-e_[a, mu] = Matrix(%id = 18446744078349449926)

(22)

This tetrad results in the following scalars

Weyl[scalars]

psi__0 = -2*Lambda*2^(1/2)+(11/4)*Lambda, psi__1 = -(1/2)*Lambda*2^(1/2)+(3/4)*Lambda, psi__2 = (1/4)*Lambda, psi__3 = -(1/2)*Lambda*2^(1/2)-(3/4)*Lambda, psi__4 = 2*Lambda*2^(1/2)+(11/4)*Lambda

(23)

that are not in canonical form, which for Petrov type III is as in Petrov type II but in addition we should have `&Psi;__2` = 0.

Compute now a canonical form for the tetrad

TransformTetrad(canonicalform)

Matrix(%id = 18446744078500057566)

(24)

Set this one to be the tetrad in use and recompute the Weyl scalars

"Setup(tetrad = ?):"

Weyl[scalars]

psi__0 = 0, psi__1 = 0, psi__2 = 0, psi__3 = 1, psi__4 = 0

(25)

Great!``

An Example of Petrov type N

g_[[12, 6, 1]]

`Systems of spacetime Coordinates are: `*{X = (u, v, y, z)}

 

`Default differentiation variables for d_, D_ and dAlembertian are: `*{X = (u, v, y, z)}

 

`The Defrise (1969) metric in coordinates `[u, v, y, z]

 

`Parameters: `[Lambda, kappa0]

 

"`Comments: `_Lambda < 0 required for a pure radiation solution"

 

g[mu, nu] = (Matrix(4, 4, {(1, 1) = 0, (1, 2) = -(3/2)/(y^2*Lambda), (1, 3) = 0, (1, 4) = 0, (2, 2) = -3/(y^4*Lambda), (2, 3) = 0, (2, 4) = 0, (3, 3) = 3/(y^2*Lambda), (3, 4) = 0, (4, 4) = 3/(y^2*Lambda)}, storage = triangular[upper], shape = [symmetric]))

(26)

Assume(y > 0, Lambda > 0)

{Lambda::(RealRange(Open(0), infinity))}, {y::(RealRange(Open(0), infinity))}

(27)

PetrovType()

"N"

(28)

The original tetrad and related Weyl scalars are not in canonical form:

e_[]

Physics:-Tetrads:-e_[a, mu] = Matrix(%id = 18446744078404437406)

(29)

Weyl[scalars]

psi__0 = -(1/4)*Lambda, psi__1 = -((1/4)*I)*Lambda, psi__2 = (1/4)*Lambda, psi__3 = ((1/4)*I)*Lambda, psi__4 = -(1/4)*Lambda

(30)

For Petrov type "N", the canonical form has `&Psi;__4` <> 0 and all the other `&Psi;__n` = 0.

Compute a canonical form, set it to be the tetrad in use and recompute the Weyl scalars

TransformTetrad(canonicalform)

Matrix(%id = 18446744078518486190)

(31)

"Setup(tetrad = ?):"

Weyl[scalars]

psi__0 = 0, psi__1 = 0, psi__2 = 0, psi__3 = 0, psi__4 = 1

(32)

All as expected.

An Example of Petrov type D

 

g_[[12, 8, 4]]

`Systems of spacetime Coordinates are: `*{X = (t, x, y, z)}

 

`Default differentiation variables for d_, D_ and dAlembertian are: `*{X = (t, x, y, z)}

 

`The  metric in coordinates `[t, x, y, z]

 

`Parameters: `[A, B]

 

"`Comments: `k = 0, kprime = 1, not an Einstein metric"

 

g[mu, nu] = (Matrix(4, 4, {(1, 1) = -B^2*sin(z)^2, (1, 2) = 0, (1, 3) = 0, (1, 4) = 0, (2, 2) = A^2, (2, 3) = 0, (2, 4) = 0, (3, 3) = A^2*x^2, (3, 4) = 0, (4, 4) = B^2}, storage = triangular[upper], shape = [symmetric]))

(33)

Assume(A > 0, B > 0, x > 0, 0 <= z and z <= (1/4)*Pi)

{A::(RealRange(Open(0), infinity))}, {B::(RealRange(Open(0), infinity))}, {x::(RealRange(Open(0), infinity))}, {z::(RealRange(0, (1/4)*Pi))}

(34)

PetrovType()

"D"

(35)

The default tetrad and related Weyl scalars are not in canonical form, which for Petrov type "D" is with `&Psi;__2` <> 0 and all the other `&Psi;__n` = 0

e_[]

Physics:-Tetrads:-e_[a, mu] = Matrix(%id = 18446744078503920694)

(36)

Weyl[scalars]

psi__0 = (1/4)/B^2, psi__1 = 0, psi__2 = (1/12)/B^2, psi__3 = 0, psi__4 = (1/4)/B^2

(37)

Transform the  tetrad, set it and recompute the Weyl scalars

TransformTetrad(canonicalform)

Matrix(%id = 18446744078814996830)

(38)

"Setup(tetrad=?):"

Weyl[scalars]

psi__0 = 0, psi__1 = 0, psi__2 = -(1/6)/B^2, psi__3 = 0, psi__4 = 0

(39)

Again the expected canonical form of the Weyl scalars, and `&Psi;__2` <> 0 remains invariant under transformations of Class III.

 

An Example of Petrov type O

 

Finally an example of type "O". This corresponds to a conformally flat spacetime, for which the Weyl tensor (and with it all the Weyl scalars) vanishes. So the code just interrupts with "not implemented for conformally flat spactimes of Petrov type O"

g_[[8, 33, 1]]

`Systems of spacetime Coordinates are: `*{X = (t, x, y, z)}

 

`Default differentiation variables for d_, D_ and dAlembertian are: `*{X = (t, x, y, z)}

 

`The  metric in coordinates `[t, x, y, z]

 

`Parameters: `[K]

 

"`Comments: `_K=3*_Lambda, _K>0 de Sitter, _K<0 anti-de Sitte"

 

g[mu, nu] = z

(40)

PetrovType()

"O"

(41)

The Weyl tensor and its scalars all vanish:

Weyl[nonzero]

Physics:-Weyl[mu, nu, alpha, beta] = {}

(42)

simplify(evala([Weyl[scalars]]))

[psi__0 = 0, psi__1 = 0, psi__2 = 0, psi__3 = 0, psi__4 = 0]

(43)

TransformTetrad(canonicalform)

Error, (in Tetrads:-CanonicalForm) canonical form is not implemented for flat or conformally flat spacetimes of Petrov type "O"

 

NULL

 

Download TetradsAndWeylScalarsInCanonicalForm.mw

Edgardo S. Cheb-Terrab
Physics, Differential Equations and Mathematical Functions, Maplesoft

 

Hello

 

I will try to be as specific as possible.

On my Ti nspire it is possible for me to calculate polar equations like on the buttom picture with the settings on the upper picture. But when I try this in Maple It is not possible. I have worked my way try for two days now and it does not work for me.

Does any body know how to get this solved? 

Regards

Heide

 

I have two polynomials f(x,y,z) and g(x,y,z) and ask MAPLE to find conditions on the coefficients of f and g such that the Jacobian determinant in x and y is purely a polynomial in z. MAPLE finds 4 solutions, one of which is g=0, but does not find the solution f=0. I attach the relevant MAPLE worksheet.

An update to Maple 2016 is now available. Maple 2016.1 provides:

  • Updated translations for Simplified and Traditional Chinese,  French, Greek, Japanese, Brazilian Portuguese, and Spanish
  • Updates to the new Maple Workbook
  • Enhancements to Maple’s context-sensitive menus
  • A variety of improvements to the math engine and interface

 

To get this update, use Tools>Check for Updates from within Maple, or visit the Maple 2016.1 downloads page.

 

eithne

Hello,

How can I do to suppress all the complex components of a vector ? Is there a simple code to do this?

For example, I would like to replace the complex components with zero.

If the considered vector is a:= [2+I,2,5], i would like to obtain after modifications amod:= [0,2,5] ou amod  [Nothing,2,5]

VectorWithComplexComponents.mw

Nota :

The origin of my issue is to be able to plot points with the following syntax :

pointplot([tp,xp,symbol = solidcircle,color=black,symbolsize = 10): where xp is a vector with, sometimes, some complex components. 

I would like to plot the points only for the real components of xp

Thanks a lot for your help

 

 

This question is related to the recent post
http://www.mapleprimes.com/questions/211460-Series-Of-Bessel-Functions

1. Consider the following fast convergent series:

f:=n->(-1)^(n+1)*1/(n+exp(n));
S1:=Sum(f(n),n=1..infinity);
evalf(S1);
S2:=Sum(f(2*n-1)+f(2*n),n=1..infinity);
evalf(S2);

As expected, the sum of the series is obtained very fast (with any precision), same results for S1 and S2.


2. Now change the series to a very slowly convergent one:

f:=n->(-1)^(n+1)/sqrt(n+sqrt(n));

evalf(S1) is computed also extremely fast, because the acceleration algorithm works here perfectly.
But evalf(S2) demonstrates a bug:

Error, (in evalf/Sum1) invalid input: `evalf/Sum/infinite` expects its 2nd argument, ix, to be of type name, but received ...


3. Let us take another series:

f:=n->(-1)^(n+1)/sqrt(n+sqrt(n)*sin(n));

Now evalf(S1) does not evaluate numerically and evalf(S2) ==> same error.
Note that I do not know whether this series is convergent or not, but the same thing happens for the obviously convergent series

f:=n->(-1)^(n+1)/sqrt(n^(11/5)+n^2*sin(n));

(because it converges slowly (but absolutely) and the acceleration fails).
I would be interested to know a method to approximate (in Maple) the sum of such series.

Edit. Now I know that the mentioned series 

converges (but note that Leibniz' test cannot be used).

I am trying to have the output of DETOOLS as 3dpolarplot. As in the following example:

 

EF := {2*(diff(w[2](t), t)) = 10, diff(w[1](t), t) = sqrt(2/w[1](t)), diff(w[3](t), t) = 0}; with(DEtools); DEplot3d(EF, {w[1](t), w[2](t), w[3](t)}, t = 0 .. 100, [[w[1](0) = 1, w[2](0) = 0, w[3](0) = 0]], scene = [w[1](t), w[2](t), w[3](t)], stepsize = .1, orientation = [139, -106])

 

how can I get the output as a polarplot in 3d where, w[2] and w[3] have range 0..2*pi.

Please help in this respect asap.

 

Hello,

I would like to obtain the display of several outputs from a procedure.

Sorry for this question which should be quiet simple but I didn't manage to solve my issue. By the past, I always wanted to obtain only one output from a procedure.

I put attached a example of procedure which calculates x^2 and x^3 for a given value of x.

With my procedure, I didn't obtain the display of the output calculating the square value.

How can I display all the outputs of a procedure ?

Thank you for your help

ExampleOfprocedure.mw

As a college project we have to implement the caesar cipher on maple but as beginners we haven't got a clue. 

Any advice even on how to begin please?

 

I am using maple 13 to found Eingenvalues of an hermitian matrix :

M1:=Matrix([
> [lambda3+lambda4,0,0,0,0,0,lambda4/sqrt(2),0,0,I*lambda4/sqrt(2)],
> [0,lambda3/4,0,0,0,0,0,0,0,0],
> [0,0,lambda3/4,0,0,0,0,0,0,0],
> [0,0,0,lambda3/4,0,0,0,0,0,0],
> [0,0,0,0,lambda3/4,0,0,0,0,0],
> [0,0,0,0,0,lambda3,0,0,0,0],
> [lambda4/sqrt(2),0,0,0,0,0,lambda3/2,0,0,0],
> [0,0,0,0,0,0,0,lambda2,0,0],
> [0,0,0,0,0,0,0,0,lambda2,0],
> [-I*lambda4/sqrt(2),0,0,0,0,0,0,0,0,lambda4/2]
> ]);

>Eigenvalues(M1);

my surprise is that maple gives me 8 correct solutions an 2 complex eigenvalues which are not acceptable (we now that the eigenvalues for an hermitian matrix are all real) .

To understand the output of maple, first,  I suspect that the complex part of the roots was null but without success I haven't found how to do it zero...

is it a bug? Thanks a lot to cooperation

Hello,

I have .mla. package and I would like to create the source code associated to this package.

In the past, you have also help me to obtain the source code of procedure of the module.

Here the post where Carl Love has helped me :

http://www.mapleprimes.com/questions/203676-Open-A-Maple-Package

How can I do to create the complete source code of package directly ?

Is there a direct way enabling to not have to read one procedure by one procedure but to obtain the code source for all the package ?

Thank you for your help

 

 

Environment: Maple2015, MATLAB_R2014b(MacOSX10.8.5), 2015b(MacOSX10.11.4)

MapleToolbox2015.1MacInstaller.app was successfully completed (log tells us), but when MATLAB were booted, following error messages appeared and symbolic operations of maple failed. 

This would be closely related to maple installation on MATLAB as such errors never occur for clean install of MATLABs and looks independent on OSX versions. Now javaforosx.dmg in use by instruction of Maplesoft.  Something wrong is in Maple2015. Note maple-MATLAB link works normally.

Please provide us with direction of how to fix it hopefully by Maplesoft professionals.

 

(Quote of MATLAB command window display)

Exception in thread "Startup Class Loader" java.lang.UnsatisfiedLinkError: jogamp.common.os.MachineDescriptionRuntime.getPointerSizeInBytesImpl()I

at jogamp.common.os.MachineDescriptionRuntime.getPointerSizeInBytesImpl(Native Method)

at jogamp.common.os.MachineDescriptionRuntime.getRuntimeImpl(MachineDescriptionRuntime.java:138)

at jogamp.common.os.MachineDescriptionRuntime.getRuntime(MachineDescriptionRuntime.java:124)

at com.jogamp.common.os.Platform.<clinit>(Platform.java:228)

at javax.media.opengl.GLProfile.<clinit>(GLProfile.java:83)

at com.mathworks.hg.peer.JavaSceneServerPeer.initializeJOGL(JavaSceneServerPeer.java:114)

at com.mathworks.hg.peer.JavaSceneServerPeer.<clinit>(JavaSceneServerPeer.java:100)

at java.lang.Class.forName0(Native Method)

at java.lang.Class.forName(Class.java:190)

at com.mathworks.mde.desk.StartupClassLoader.loadClass(StartupClassLoader.java:258)

at com.mathworks.mde.desk.StartupClassLoader.access$900(StartupClassLoader.java:25)

at com.mathworks.mde.desk.StartupClassLoader$2.run(StartupClassLoader.java:244)

at java.lang.Thread.run(Thread.java:745)

>> maple();

error: maple (line 178)

Invalid MEX-file '/Applications/MATLAB_R2014b.app/toolbox/maple/maplemex.mexmaci64':

dlopen(/Applications/MATLAB_R2014b.app/toolbox/maple/maplemex.mexmaci64, 6): Symbol not found: ___sincos_stret

  Referenced from: /Library/Frameworks/Maple.framework/Versions/2015/bin.APPLE_UNIVERSAL_OSX/libhf.dylib

  Expected in: /usr/lib/libSystem.B.dylib

 in /Library/Frameworks/Maple.framework/Versions/2015/bin.APPLE_UNIVERSAL_OSX/libhf.dylib

>> syms x  y

error: sym (line 186)

Invalid MEX-file '/Applications/MATLAB_R2014b.app/toolbox/maple/maplemex.mexmaci64':

dlopen(/Applications/MATLAB_R2014b.app/toolbox/maple/maplemex.mexmaci64, 6): Symbol not found: ___sincos_stret

  Referenced from: /Library/Frameworks/Maple.framework/Versions/2015/bin.APPLE_UNIVERSAL_OSX/libhf.dylib

  Expected in: /usr/lib/libSystem.B.dylib

 in /Library/Frameworks/Maple.framework/Versions/2015/bin.APPLE_UNIVERSAL_OSX/libhf.dylib

 error: sym (line 56)

           assignin('caller',varargin{i},sym(varargin{i})); 

(Unquote)

 

 

 

First 1113 1114 1115 1116 1117 1118 1119 Last Page 1115 of 2224