Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

Can anyone explain the reasoning that went into the programming decisions that led Maple to give these results?

restart:
is(-infinity, complex); #expected: false
                             false 
is(-infinity-I*infinity, complex); #expected: false
                              true
exp(-infinity - I) = limit(exp(x-I), x= -infinity); #expected: 0=0
                         infinity*I = 0
is(exp(x)<>0) assuming x::complex; #expected: true
                             false
is(exp(x)<>0) assuming x::real; #expected: true
                              true
coulditbe(exp(x)=0) assuming x::complex; #expected: false
                              true

 

I got my maplet and there error occurs when I try to display it - Error, (in Maplets:-Display) BoxCell contains an element (_Maplets_reference_1235) that cannot be placed in a layout.
Please correct Maplet definition.

How to fix it?

with(Maplets[Elements]);

mpt := Maplet(Window("Точка выше или ниже прямой", [[[ToggleButton[TB1]("Tt", 'group' = 'tb1')], [ToggleButton[TB2]("Tt", 'group' = 'tb1')]], ButtonGroup['tb1']()]));

Display(mpt);

Hi I want to generate dihedral group of order 8.I have given the commands
with (GroupTheory):

GroupTheory(DihedralGroup);

DihedralGroup(8, s);
                              D[8]
Elements(DihedralGroup(8, s));
{(), (12345678), (14725836), (16385274), (18765432), 

  (1357)(2468), (1753)(2864), (13)(48)(57), (15)(24)(68), 

  (17)(26)(35), (28)(37)(46), (12)(38)(47)(56), (14)(23)(58)(67), 

  (15)(26)(37)(48), (16)(25)(34)(78), (18)(27)(36)(45)}
but I need symmetric and rotation matrices like 

R0=[1,0;0 1],R1=[0,-1;1,0], R2=[-1,0;0,1], R3=[0 1;-1,0],S0=[1 0;0 -1], S1=[0 1 ;1 0], S2=[-1,0;0,1]; S3=[0,-1;-1,0]
 Can any one help me how to generate these matrices

I am trying to check to see if two equations are equivalent, subject to rearrangment and scalar multiplication. For example, I would to have a procedure that would determine that each of the following equations are the equivalent:

(a) (1/2)*y*exp(-y)+2*y^3 - x*ln(x) +x^2 = 10
(b) (1/2)*y*exp(-y)+2*y^3 +x^2 = 10 + x*ln(x)

(c) y*exp(-y)+4*y^3 - 2*x*ln(x) +2*x^2 = 20

Is there a systematic way to go about doing this? Thanks!

I have a vector v= [1 ,1,0]
M=[1 2 3; 5 4 3; 7 9 0];

c=v.M

whats wrong with this. error is in the last statement

Hi

I have a solution obtained using

sol:=pdsolve(PDE,BC);

"sol" is a function depend on variable x,

how can I differentiate this sol ( which a function ) then plot it

many thanks

 

How to find 

a:=[8, 9 ,9 ,7 ,9 ,10 ,5]-1 mod 11

Hello I want to multiply two vectors like

X=[x,x2,...x10]

G=[g1,g2,...g10]

y=[x1*g1,x2*g2, ........, x10*g10]

How to perform this transformation in maple?

Thanks

 

with(Maplets);
with(Elements);
with(plots);
with(DocumentTools);

 I use GetProperty("d", value) = "true"  to check if checkbox is checked but it does not work. How can I check if checkbox is checked?

 


workk := proc(g)

if GetProperty("d", value) = "true" then

print("true");

else print("False");

end if;

end proc;

 

 

mpt := Maplet(Window("aaaa", [[Plotter[f]()],

["Scalar", CheckBox[d]()],

[Button("Add", Evaluate(f = 'workk(1)')),

Button("OK", Shutdown())]]));

Display(mpt);
 

Hey,

Is anyone of you capable of simplifying this expression

f1:=(-3*sin(8*x) + 3*sin(8*x + 2*y) - 3*sin(8*x + 6*y) + 3*sin(8*y + 8*x) + 3*sin(8*y + 6*x) + 3*sin(8*y) - 18*sin(8*y + 4*x) + 3*sin(8*y + 2*x) - 45*sin(6*y + 6*x) + 87*sin(4*y + 6*x) - 3*sin(6*x - 2*y) - 87*sin(6*x + 2*y) + 18*sin(4*x - 4*y) - 93*sin(4*x + 4*y) + 93*sin(4*x + 6*y) - 51*sin(2*x - 4*y) - 342*sin(2*x + 4*y) - 3*sin(-6*y + 2*x) + 51*sin(6*y + 2*x) - 93*sin(-2*y + 4*x) + 342*sin(-2*y + 2*x) + 639*sin(2*x + 2*y) - 639*sin(2*x) + 45*sin(6*x) + 93*sin(4*x) + 231*sin(4*y) - 225*sin(2*y) - 63*sin(6*y) - 57*sqrt(3)*cos(2*x) - 375*sqrt(3)*cos(2*y) + sqrt(3)*cos(8*y + 8*x) - 5*sqrt(3)*cos(8*x + 6*y) - 7*sqrt(3)*cos(8*y + 6*x) + sqrt(3)*cos(8*x) + 192*sqrt(3)*cos(2*y + 4*x) + 43*sqrt(3)*cos(-2*y + 4*x) - 7*sqrt(3)*cos(6*x + 2*y) + 7*sqrt(3)*cos(-6*y + 2*x) - 5*sqrt(3)*cos(6*y) - 149*sqrt(3)*cos(4*x + 4*y) - 149*sqrt(3)*cos(4*x) - 65*sqrt(3)*cos(6*y + 2*x) + 126*sqrt(3)*cos(2*x + 4*y) - 65*sqrt(3)*cos(2*x - 4*y) - 5*sqrt(3)*cos(8*x + 2*y) - sqrt(3)*cos(8*y) + 7*sqrt(3)*cos(8*y + 2*x) + 6*sqrt(3)*cos(8*x + 4*y) - 57*sqrt(3)*cos(2*x + 2*y) + 125*sqrt(3)*cos(4*y) + 126*sqrt(3)*cos(-2*y + 2*x) - 7*sqrt(3)*cos(6*x - 2*y) + 19*sqrt(3)*cos(6*x) + 43*sqrt(3)*cos(4*x + 6*y) + 19*sqrt(3)*cos(6*y + 6*x) - 7*sqrt(3)*cos(4*y + 6*x) + 246*sqrt(3))/(2*(-261*sin(4*x + y) - 297*sin(2*x + 3*y) - 48*sin(5*y + 6*x) + 126*sin(5*y + 2*x) + 9*sin(5*y + 8*x) + 12*sin(7*y + 6*x) - 9*sin(7*y + 4*x) - 36*sin(5*y + 4*x) + 261*sin(3*y + 4*x) + 9*sin(-3*y + 4*x) + 297*sin(-y + 2*x) - 135*sin(3*y) - 21*sin(5*y) - 147*cos(y)*sqrt(3) - 9*sqrt(3)*cos(7*y + 4*x) - 3*sqrt(3)*cos(5*y + 8*x) - 3*sqrt(3)*cos(3*y + 8*x) + 54*sqrt(3)*cos(6*x + 3*y) + 5*sqrt(3)*cos(-5*y + 2*x) + 5*sqrt(3)*cos(7*y + 2*x) - 2*sqrt(3)*cos(6*x - y) - 20*sqrt(3)*cos(6*x + y) - 69*sqrt(3)*cos(4*x + y) + 68*sqrt(3)*cos(4*x - y) + 2*sqrt(3)*cos(8*x + y) + 2*sqrt(3)*cos(7*y + 8*x) - 20*sqrt(3)*cos(5*y + 6*x) - 2*sqrt(3)*cos(7*y + 6*x) + 68*sqrt(3)*cos(5*y + 4*x) - 9*sqrt(3)*cos(-3*y + 4*x) - 69*sqrt(3)*cos(3*y + 4*x) - 171*sqrt(3)*cos(2*x + 3*y) - 35*sqrt(3)*cos(5*y) + 171*sqrt(3)*cos(3*y) - 171*sqrt(3)*cos(-y + 2*x) + 354*sqrt(3)*cos(2*x + y) + sqrt(3)*cos(7*y) + 639*sin(y) - 9*sin(3*y + 8*x) - 12*sin(6*x - y) + 3*sin(7*y) - 9*sin(7*y + 2*x) + 9*sin(-5*y + 2*x) + 48*sin(6*x + y) + 36*sin(4*x - y) - 126*sin(2*x - 3*y)))

 

into

 

cos(y-Pi/3).

 

PS: Actually I managed by expanding the thing out and converting to exp then expanding again and using radnormal. In essence I leave the question, because maybe somebody can explain to me why radnormal seems to be superior (sometimes) to simplify which I thought of as the USEALL choice. Thanks


 

StringTools['Explode']("1&le; n&le;m")

["1", "&", "l", "e", ";", " ", "n", "&", "l", "e", ";", "m"]

(1)

``


 

Download q1stringtool.mw

I recieved the following error:

Error, (in ifactor/QuadraticSieve:-SieveCube) sieving failure

But when I review the procedure ifactor, it doesnt tell me anything about A Quadratic Sieve algorithm, and it's really long and looks dodgey and suspicious, like line 24 for example, why is it computing the greatest integer divisor of a local variable and a random enormous square free number? and then another with an additional factor a few lines later? 

Hello

I need to solve or reduce (similar to the command Reduce in Mathematica) sets of nonlinear equations.  One such example is shown below:

eqns := {-1+theta[3, 6] = 0, 1-theta[3, 6] = 0, alpha+rho-theta[2, 2]+theta[3, 3] = 0, -theta[3, 6]^2+1 = 0, theta[2, 2]*theta[3, 6]-alpha = 0, theta[2, 2]*theta[3, 6]^2-alpha = 0, -2*theta[3, 3]*theta[3, 6]-2*rho = 0, theta[1, 2]*theta[2, 1]*theta[3, 6]^2+1 = 0, -alpha^2+rho^2+theta[2, 2]^2-theta[3, 3]^2 = 0, -theta[2, 2]^2*theta[3, 6]+2*theta[2, 2]*theta[3, 3]*theta[3, 6]+alpha^2+2*alpha*rho = 0, -theta[1, 3]*theta[2, 2]^2*theta[3, 0]+theta[1, 3]*theta[2, 2]*theta[3, 0]*theta[3, 3]-alpha^2*beta-alpha*beta*rho = 0, -theta[1, 2]*theta[2, 1]*theta[2, 2]*theta[3, 6]+2*theta[1, 2]*theta[2, 1]*theta[3, 3]*theta[3, 6]-alpha-2*rho = 0, -theta[1, 2]*theta[2, 1]*theta[2, 2]*theta[3, 3]+theta[1, 2]*theta[2, 1]*theta[3, 3]^2+theta[1, 3]*theta[2, 2]*theta[3, 0]*theta[3, 6]+alpha*beta+alpha*rho+rho^2 = 0, -alpha^2*rho-alpha*rho^2+theta[1, 2]*theta[2, 1]*theta[2, 2]-theta[1, 2]*theta[2, 1]*theta[3, 3]+theta[1, 3]*theta[3, 0]*theta[3, 6]-theta[2, 2]^2*theta[3, 3]+theta[2, 2]*theta[3, 3]^2+alpha+beta+rho = 0}

 and the indeterminates are:

fc := {theta[1, 2], theta[1, 3], theta[2, 1], theta[2, 2], theta[3, 0], theta[3, 3], theta[3, 6]}

Since I do know the solution, I issued the following command to check for typos.

seq(subs(theta[1,2]=-1,theta[1,3]=-1,theta[2,1]=1,theta[2,2]=alpha,theta[3,0]=beta,theta[3,3]=-rho,theta[3,6]=1,eqns[i]),i=1..nops(eqns))

and the outcome is zero for all equations.

When I try the command solve as follows:

solve(eqns,fc);

the result is

{theta[1, 2] = theta[1, 2], theta[1, 3] = theta[1, 3], theta[2, 1] = -1/theta[1, 2], theta[2, 2] = alpha, theta[3, 0] = -beta/theta[1, 3], theta[3, 3] = -rho, theta[3, 6] = 1}

that should be right but it is not what I am expecting.  

How can maple return the solution needed?

 

Some sets of solutions do not have a solution as the one above.  Some indeterminates cannot be found, is there a way maple returns the solution of the ones that can be solved and reduced the set of equations into two parts, solved ones e non solved ones?  I can provide an example if needed.

 

Many thanks.

Ed

 

Non-Linear overdetermined equations - which is best method? with less number of iterations

When I use Jacobi it takes 25 iterations.

Any other method which takes less iterations?

First 627 628 629 630 631 632 633 Last Page 629 of 2224