Question: ODE resolution

Hello,
I try to solve ODE. The resolution should be possible since I have found an article from which the calculations were done with Matlab.Here, I try to solve my system of equations diffs with maple.

restart;  with(linalg):  with(LinearAlgebra):  with(Student[MultivariateCalculus]):  with( DynamicSystems ):  with(plots):  eq1:=diff(xG[2](t), t, t) = -2000000*xG[2](t)-400*(diff(xG[2](t), t))+1000000*xG[3](t)-500000*cos(theta[3](t))+200*(diff(xG[3](t), t))+100*sin(theta[3](t))*(diff(theta[3](t), t));  eq2:=diff(yG[2](t), t, t) = -2000000*yG[2](t)-9.81-400*(diff(yG[2](t), t))+1000000*yG[3](t)-500000*sin(theta[3](t))+200*(diff(yG[3](t), t))-100*cos(theta[3](t))*(diff(theta[3](t), t));  eq3:=diff(theta[2](t), t, t) = 10-(.1000000000*(-1000000*yG[2](t)+1.000000000*10^5*sin(theta[2](t))-200*(diff(yG[2](t), t))+20.00000000*cos(theta[2](t))*(diff(theta[2](t), t))))*cos(theta[2](t))+(.1000000000*(-1000000*xG[2](t)+1.000000000*10^5*cos(theta[2](t))-200*(diff(xG[2](t), t))-20.00000000*sin(theta[2](t))*(diff(theta[2](t), t))))*sin(theta[2](t));  eq4:=diff(xG[3](t), t, t) = -2000000*xG[3](t)+1000000*xG[2](t)+1.000000000*10^5*cos(theta[2](t))-400*(diff(xG[3](t), t))+200*(diff(xG[2](t), t))-20.00000000*sin(theta[2](t))*(diff(theta[2](t), t))+1000000*xG[4](t)+200*(diff(xG[4](t), t));  eq5:=diff(yG[3](t), t, t) = -2000000*yG[3](t)+1000000*yG[2](t)+1.000000000*10^5*sin(theta[2](t))-400*(diff(yG[3](t), t))+200*(diff(yG[2](t), t))+20.00000000*cos(theta[2](t))*(diff(theta[2](t), t))+1000000*yG[4](t)+200*(diff(yG[4](t), t))-9.81;  eq6:=diff(theta[3](t), t, t) = -2*(diff(theta[3](t), t))+(1/2*(1000000*yG[3](t)-500000*sin(theta[3](t))-1000000*yG[2](t)-1.000000000*10^5*sin(theta[2](t))+200*(diff(yG[3](t), t))-100*cos(theta[3](t))*(diff(theta[3](t), t))-200*(diff(yG[2](t), t))-20.00000000*cos(theta[2](t))*(diff(theta[2](t), t))))*cos(theta[3](t))-(1/2*(1000000*xG[3](t)-500000*cos(theta[3](t))-1000000*xG[2](t)-1.000000000*10^5*cos(theta[2](t))+200*(diff(xG[3](t), t))+100*sin(theta[3](t))*(diff(theta[3](t), t))-200*(diff(xG[2](t), t))+20.00000000*sin(theta[2](t))*(diff(theta[2](t), t))))*sin(theta[3](t))+(1/2*(1000000*yG[4](t)-1000000*yG[3](t)-500000*sin(theta[3](t))+200*(diff(yG[4](t), t))-200*(diff(yG[3](t), t))-100*cos(theta[3](t))*(diff(theta[3](t), t))))*cos(theta[3](t))-(1/2*(1000000*xG[4](t)-1000000*xG[3](t)-500000*cos(theta[3](t))+200*(diff(xG[4](t), t))-200*(diff(xG[3](t), t))+100*sin(theta[3](t))*(diff(theta[3](t), t))))*sin(theta[3](t));  eq7:=diff(xG[4](t), t, t) = -1000000*xG[4](t)+1000000*xG[3](t)+500000*cos(theta[3](t))-205*(diff(xG[4](t), t))+200*(diff(xG[3](t), t))-100*sin(theta[3](t))*(diff(theta[3](t), t));  eq8:=diff(yG[4](t), t, t) = -2000000*yG[4](t)+1000000*yG[3](t)+500000*sin(theta[3](t))-1000200*(diff(yG[4](t), t))+200*(diff(yG[3](t), t))+100*cos(theta[3](t))*(diff(theta[3](t), t))-9.81;  Cinit:=D(xG[2])(0)=0,xG[2](0)=0.07,D(yG[2])(0)=0,yG[2](0)=0.07,D(theta[2])(0)=0,theta[2](0)=0.79,D(xG[3])(0)=0,xG[3](0)=0.64,D(yG[3])(0)=0,yG[3](0)=0.07,D(theta[3])(0)=0,theta[3](0)=-0.14,D(xG[4])(0)=0,xG[4](0)=1.13,D(yG[4])(0)=0,yG[4](0)=0;  sol:=dsolve({eq1,eq2,eq3,eq4,eq5,eq6,eq7,eq8,Cinit},numeric);  ttheta[2]:=odeplot(sol,[t,theta[2](t)],0..2,numpoints=200,color=blue,legend="delta_theta[2] non linéarisé"):  display(ttheta[2]);

restart; 
with(linalg): 
with(LinearAlgebra): 
with(Student[MultivariateCalculus]): 
with( DynamicSystems ): 
with(plots): 
eq1:=diff(xG[2](t), t, t) = -2000000*xG[2](t)-400*(diff(xG[2](t), t))+1000000*xG[3](t)-500000*cos(theta[3](t))+200*(diff(xG[3](t), t))+100*sin(theta[3](t))*(diff(theta[3](t), t)); 
eq2:=diff(yG[2](t), t, t) = -2000000*yG[2](t)-9.81-400*(diff(yG[2](t), t))+1000000*yG[3](t)-500000*sin(theta[3](t))+200*(diff(yG[3](t), t))-100*cos(theta[3](t))*(diff(theta[3](t), t)); 
eq3:=diff(theta[2](t), t, t) = 10-(.1000000000*(-1000000*yG[2](t)+1.000000000*10^5*sin(theta[2](t))-200*(diff(yG[2](t), t))+20.00000000*cos(theta[2](t))*(diff(theta[2](t), t))))*cos(theta[2](t))+(.1000000000*(-1000000*xG[2](t)+1.000000000*10^5*cos(theta[2](t))-200*(diff(xG[2](t), t))-20.00000000*sin(theta[2](t))*(diff(theta[2](t), t))))*sin(theta[2](t)); 
eq4:=diff(xG[3](t), t, t) = -2000000*xG[3](t)+1000000*xG[2](t)+1.000000000*10^5*cos(theta[2](t))-400*(diff(xG[3](t), t))+200*(diff(xG[2](t), t))-20.00000000*sin(theta[2](t))*(diff(theta[2](t), t))+1000000*xG[4](t)+200*(diff(xG[4](t), t)); 
eq5:=diff(yG[3](t), t, t) = -2000000*yG[3](t)+1000000*yG[2](t)+1.000000000*10^5*sin(theta[2](t))-400*(diff(yG[3](t), t))+200*(diff(yG[2](t), t))+20.00000000*cos(theta[2](t))*(diff(theta[2](t), t))+1000000*yG[4](t)+200*(diff(yG[4](t), t))-9.81; 
eq6:=diff(theta[3](t), t, t) = -2*(diff(theta[3](t), t))+(1/2*(1000000*yG[3](t)-500000*sin(theta[3](t))-1000000*yG[2](t)-1.000000000*10^5*sin(theta[2](t))+200*(diff(yG[3](t), t))-100*cos(theta[3](t))*(diff(theta[3](t), t))-200*(diff(yG[2](t), t))-20.00000000*cos(theta[2](t))*(diff(theta[2](t), t))))*cos(theta[3](t))-(1/2*(1000000*xG[3](t)-500000*cos(theta[3](t))-1000000*xG[2](t)-1.000000000*10^5*cos(theta[2](t))+200*(diff(xG[3](t), t))+100*sin(theta[3](t))*(diff(theta[3](t), t))-200*(diff(xG[2](t), t))+20.00000000*sin(theta[2](t))*(diff(theta[2](t), t))))*sin(theta[3](t))+(1/2*(1000000*yG[4](t)-1000000*yG[3](t)-500000*sin(theta[3](t))+200*(diff(yG[4](t), t))-200*(diff(yG[3](t), t))-100*cos(theta[3](t))*(diff(theta[3](t), t))))*cos(theta[3](t))-(1/2*(1000000*xG[4](t)-1000000*xG[3](t)-500000*cos(theta[3](t))+200*(diff(xG[4](t), t))-200*(diff(xG[3](t), t))+100*sin(theta[3](t))*(diff(theta[3](t), t))))*sin(theta[3](t)); 
eq7:=diff(xG[4](t), t, t) = -1000000*xG[4](t)+1000000*xG[3](t)+500000*cos(theta[3](t))-205*(diff(xG[4](t), t))+200*(diff(xG[3](t), t))-100*sin(theta[3](t))*(diff(theta[3](t), t)); 
eq8:=diff(yG[4](t), t, t) = -2000000*yG[4](t)+1000000*yG[3](t)+500000*sin(theta[3](t))-1000200*(diff(yG[4](t), t))+200*(diff(yG[3](t), t))+100*cos(theta[3](t))*(diff(theta[3](t), t))-9.81; 
Cinit:=D(xG[2])(0)=0,xG[2](0)=0.07,D(yG[2])(0)=0,yG[2](0)=0.07,D(theta[2])(0)=0,theta[2](0)=0.79,D(xG[3])(0)=0,xG[3](0)=0.64,D(yG[3])(0)=0,yG[3](0)=0.07,D(theta[3])(0)=0,theta[3](0)=-0.14,D(xG[4])(0)=0,xG[4](0)=1.13,D(yG[4])(0)=0,yG[4](0)=0; 
sol:=dsolve({eq1,eq2,eq3,eq4,eq5,eq6,eq7,eq8,Cinit},numeric); 
ttheta[2]:=odeplot(sol,[t,theta[2](t)],0..2,numpoints=200,color=blue,legend="delta_theta[2] non linéarisé"): 
display(ttheta[2]); 

Is there any options to be specified in order to solve it?


Thank you for your help

Please Wait...