Question: How to create that group in Maple?

Let us consider the group of elements {(a,b,c,d): a::integer,b::integer,c::integer,d::integer,a+b+c+d=0, a=c mod 12} with the component-wise addition. How to represent it in Maple? Is it possible? What I know is

restart;

with(GroupTheory):

CyclicGroup(infinity);     

GroupTheory:-CyclicGroup(infinity, form = "fpgroup")

G := DirectProduct(CyclicGroup(infinity), CyclicGroup(infinity), CyclicGroup(infinity), CyclicGroup(infinity));

GroupTheory:-DirectProduct(module () local user_gens, 
   user_rels, embedding, generators, relators, supergroup, 
   cannot, RightCosetRepresentatives, LeftCosetRepresentatives, 
   doIsFinite, checkAbelianisation, expSum, relatorMatrix, 
   AbelianInvariants; export ModulePrint, ModuleDeconstruct, 
   IsSimple, DerivedSubgroup, Centre, FittingSubgroup, 
   FrattiniSubgroup, SolubleResidual, NilpotentResidual, 
   Hypercentre, GroupOrder, RandomElement, LeftCoset, 
   RightCoset, RightCosets, LeftCosets, Factor, IsFinite, 
   PermutationRepresentation, IsAbelian, properties; option 
   object; end module,......... ) 

Generators(G);

 [[[g0], [], [], []], [[], [g1], [], []], [[], [], [g2], []], 

   [[], [], [], [g3]]]

Please Wait...