Question:Matrix determinant

Question:Matrix determinant

Maple

Basically I have to find omega by solving determinant of the following matrix:

M := Matrix(4, 4, {(1, 1) = 0, (1, 2) = -1, (1, 3) = 0, (1, 4) = 1, (2, 1) = -EI*beta^3, (2, 2) = -m*omega^2, (2, 3) = EI*beta^3, (2, 4) = -m*omega^2, (3, 1) = EI*sin(147*beta)*beta+k_r*cos(147*beta)+I*c_r*omega*cos(147*beta), (3, 2) = EI*cos(147*beta)*beta-k_r*sin(147*beta)-I*c_r*omega*sin(147*beta), (3, 3) = -EI*sinh(147*beta)*beta+k_r*cosh(147*beta)+I*c_r*omega*cosh(147*beta), (3, 4) = -EI*cosh(147*beta)*beta+k_r*sinh(147*beta)+I*c_r*omega*sinh(147*beta), (4, 1) = -EI*cos(147*beta)*beta^3+sin(147*beta)*k_h, (4, 2) = EI*sin(147*beta)*beta^3+cos(147*beta)*k_h, (4, 3) = EI*cosh(147*beta)*beta^3+sinh(147*beta)*k_h, (4, 4) = EI*sinh(147*beta)*beta^3+cosh(147*beta)*k_h}):

The remaining values are:

beta=((5000/10^12)*(omega^2))^(1/4),k_r=3.33*10^10,k_h=1.62*10^9,c_r=3.14*10^9,m=350000,L=147,EI=10^12:

What is the proper way to deal with this problem numerically. Or maybe it is even possible to get a reasonable analytical expression?

﻿