Question: skeching f'(x) by all the points (x,f'(x)) when we have graph f(x)

How I can write a procedure in Maple 18 that it receives:

Inputs: function f(x) and real unmbers a and b (as interval [a,b]) and natural unmber n 

then devides interval [a,b] to n subinterval and computes f'(a), f'(a+(b-a)/n), f'(a+2(b-a)/n),..., and f'(a+n(b-a)/n)=f'(b)

and

showes at output: graph f(x) and all points [a,f'(a)], [a+(b-a)/n, f'(a+(b-a)/n)],[a+2(b-a)/n, f'(a+2(b-a)/n)]..., and [a+n(b-a)/n,f'(a+n(b-a)/n)] on a coordinate plane x-y

Please Wait...