Question: Solving a nonlinear system of 4 equations using shooting method

Dear All,

I have a problem solving the attached nonlinear system of equations using shooting method.
I will be grateful if you could help me finding the solutions out.

 

restart; Shootlib := "C:/Shoot9"; libname := Shootlib, libname; with(Shoot);
with(plots);
N1 := 1.0; N2 := 2.0; N3 := .5; Bt := 6; Re_m := N1*Bt; gamma1 := 1;
FNS := {f(eta), fp(eta), fpp(eta), g(eta), gp(eta), m(eta), mp(eta), n(eta), np(eta), fppp(eta)};
ODE := {diff(f(eta), eta) = fp(eta), diff(fp(eta), eta) = fpp(eta), diff(fpp(eta), eta) = fppp(eta), diff(g(eta), eta) = gp(eta), diff(gp(eta), eta) = N1*(2.*g(eta)+(eta-2.*f(eta)).gp(eta)+2.*g(eta)*fp(eta)+2.*N2.N3.(m(eta).np(eta)-n(eta).mp(eta))), diff(m(eta), eta) = mp(eta), diff(mp(eta), eta) = Re_m.(m(eta)+(eta-2.*f(eta)).mp(eta)+2.*m(eta)*fp(eta)), diff(n(eta), eta) = np(eta), diff(np(eta), eta) = Re_m.(2.*n(eta)+(eta-2.*f(eta)).np(eta)+2.*N2/N3.m(eta).gp(eta)), diff(fppp(eta), eta) = N1*(3.*fpp(eta)+(eta-2.*f(eta)).fppp(eta)-2.*N2.N2.m(eta).(diff(mp(eta), eta)))};
blt := 1.0; IC := {f(0) = 0, fp(0) = 0, fpp(0) = alpha1, g(0) = 1, gp(0) = beta1, m(0) = 0, mp(0) = beta2, n(0) = 0, np(0) = beta3, fppp(0) = alpha2};
BC := {f(blt) = .5, fp(blt) = 0, g(blt) = 0, m(blt) = 1, n(blt) = 1};
infolevel[shoot] := 1;
S := shoot(ODE, IC, BC, FNS, [alpha1 = 1.425, alpha2 = .425, beta1 = -1.31, beta2 = 1.00, beta3 = 1.29]);
Error, (in isolate) cannot isolate for a function when it appears with different arguments
p := odeplot(S, [eta, fp(eta)], 0 .. 15);
Error, (in plots/odeplot) input is not a valid dsolve/numeric solution
display(p);
Error, (in plots:-display) expecting plot structure but received: p
p2 := odeplot(S, [eta, theta(eta)], 0 .. 10);
Error, (in plots/odeplot) input is not a valid dsolve/numeric solution
display(p2);
Error, (in plots:-display) expecting plot structure but received: p2

 

 

Please Wait...