Question: Triangle function Fourier transform

I know that the Fourier transform of the triangle function is the sinc function squared, but I cannot seem to reproduce this in MAPLE.  How do I get from R2 to the square of the sinc function or do I have a screw up in defining the integral?  I need another set of eyes.  I have been at this for awhile & cannot seem to breakthrough.


 

plot(piecewise(-1 < x and x < 0, 1+x, 0 < x and x < 1, 1-x), x = -2 .. 2, linestyle = solid, thickness = 5, scaling = constrained, title = "Symmetric Triangle Wave")

 

(int((1+t)*exp(-I*(2*Pi*n*t/T)), t = -(1/2)*T .. 0)+int((1-t)*exp(-I*(2*Pi*n*t/T)), t = 0 .. (1/2)*T))/T = ((-(2*I)*n*Pi-T+I*T*n*Pi)*exp(I*n*Pi)+(2*I)*n*Pi+T-(2*I)*n*Pi+T+((2*I)*n*Pi-T-I*T*n*Pi)*exp(-I*n*Pi))/(2^2*n^2*Pi^2)
"(->)"true"(->)"true

(int((1+t)*exp(-I*(2*Pi*n*t/T)), t = -(1/2)*T .. 0)+int((1-t)*exp(-I*(2*Pi*n*t/T)), t = 0 .. (1/2)*T))/T = ((-T+I*T*n*Pi)*exp(I*n*Pi)+2*T-(T+I*T*n*Pi)*exp(-I*n*Pi))/(2^2*n^2*Pi^2)
"(->)"true"(->)"true

R1 := ((-T+I*T*n*Pi)*exp(I*n*Pi)+2*T-(T+I*T*n*Pi)*exp(-I*n*Pi))/(2^2*n^2*Pi^2)

(1/4)*((-T+I*T*n*Pi)*exp(I*n*Pi)+2*T-(T+I*T*n*Pi)*exp(-I*n*Pi))/(n^2*Pi^2)

(1)

R1 = (1/4)*(2*T-T*(exp(-I*n*Pi)+exp(I*n*Pi))-I*(exp(-I*n*Pi)-exp(I*n*Pi))*Pi*T*n)/(n^2*Pi^2)"(->)"true

NULL

exp(-I*n*Pi)+exp(I*n*Pi)"(=)"2*cos(Pi*n)

exp(-I*n*Pi)+exp(I*n*Pi) = 2*cos(Pi*n)"(->)"false

exp(-I*n*Pi)-exp(I*n*Pi)"(=)"-(2*I)*sin(Pi*n)

exp(-I*n*Pi)-exp(I*n*Pi) = -(2*I)*sin(Pi*n)"(->)"false

R2 := (1/4)*(-2*cos(Pi*n)*T-2*sin(Pi*n)*T*n*Pi+2*T)/(n^2*Pi^2)

(1/4)*(-2*cos(Pi*n)*T-2*sin(Pi*n)*T*n*Pi+2*T)/(n^2*Pi^2)

(2)

R2 = 2*T*(1-cos(Pi*n)-Pi*n*sin(Pi*n))/(2^2*n^2*Pi^2)"(->)"true"(->)"true"(->)"true"(->)"true"(->)"true

-2*cos(Pi*n)*T-2*sin(Pi*n)*T*n*Pi+2*T"(=)"-2*T*(cos(Pi*n)+Pi*n*sin(Pi*n)-1)``

1-cos(a) = 2*sin((1/2)*a)^2"(->)"true

(1/2)*(-exp(I*n*Pi)+1+I*n*Pi)/(Pi^2*n^2)-(1/2)*(I*exp(I*n*Pi)*Pi*n-exp(I*n*Pi)+1)*exp(-I*n*Pi)/(Pi^2*n^2) = (1/2)*(2-exp(I*n*Pi)-exp(-I*n*Pi))/(Pi^2*n^2)"(->)"true

2-exp(I*n*Pi)-exp(-I*n*Pi) = -exp(-I*n*Pi)*(exp(I*n*Pi)-1)^2"(->)"true

2-exp(I*n*Pi)-exp(-I*n*Pi) = -exp(-I*n*Pi)*(exp(I*n*Pi)-exp(I*n*Pi)*exp(-I*n*Pi))^2"(->)"true

2-exp(I*n*Pi)-exp(-I*n*Pi) = -exp(-I*n*Pi)*(exp(I*n*Pi)*(exp(I*n*Pi)-exp(-I*n*Pi)))^2"(->)"true"(->)"true

2-exp(I*Pi*n)-exp(-I*Pi*n) = -exp(-I*Pi*n)*exp((2*I)*Pi*n)*(exp(I*Pi*n)-exp(-I*Pi*n))^2"(->)"true"(->)"true

exp(I*Pi*n)-exp(-I*Pi*n)"(=)"(2*I)*sin(Pi*n)

``


 

Download symmetric_triangle_fourier_coeffs.mw

Please Wait...