Question: How to Quantify the Difference between Representations of a Function?

I am considering a Fourier series

$cos (\alpha x) = \frac{1}{2}a_0 + \sum_{k=1}^{\infty}a_k cos(kx)$ for x between -pi and pi.

I have also shown using a different Fourier series that cos (\alpha x) has an alternative representation:

\frac{cos(\alpha x)}{\sin \alpha \pi} = \frac{1}{\pi \alpha} (1 + \frac{(\alpha \ pi)^2}{6} - \frac{\alpha x^2}{2 \pi} + \frac{2*\alpha^3}{\pi}\sum_{k=1}^{\infty}\frac{(-1)^{k-1}}{k^2(k^2 - \alpha^2}*cos(kx)$.

To show that the second representation is a better approximation, I need to find the number of terms for this series and the original Fourier series needed for there to be a difference of 10^{-3} from the exact value of cos(\alpha \pi), assuming that \alpha = 0.75.  Could someone advise how I might do this?


Please Wait...