Question: Can Maple reverse the product rule in more than one dimension?

Hello,

I am trying to get Maple to recognize and reverse the product rule in more than one dimension. In one dimension, this works:

Int((Diff(f(x), x))*g(x)+(Diff(g(x), x))*f(x), x) = int((diff(f(x), x))*g(x)+f(x)*(diff(g(x), x)), x);

Int((Diff(f(x), x))*g(x)+(Diff(g(x), x))*f(x), x) = int((diff(f(x), x))*g(x)+f(x)*(diff(g(x), x)), x).

But in two dimensions, it no longer evaluates:

Int((Diff(f(x, y), x))*g(x, y)+(Diff(g(x, y), x))*f(x, y), x) = int((diff(f(x, y), x))*g(x, y)+f(x, y)*(diff(g(x, y), x)), x)

Int((Diff(f(x, y), x))*g(x, y)+(Diff(g(x, y), x))*f(x, y), x) = int((diff(f(x, y), x))*g(x, y)+f(x, y)*(diff(g(x, y), x)), x)

As far as I can tell, mathematically these should be identical (except for the antiderivatives being defined up to a constant in the first case and a function of y in the second). Is there a way to get Maple to reverse the product rule to integrate in more than one dimension? Or am I missing something mathematically that makes this incorrect?

Thanks for your help,

Johnathan

Please Wait...