Question: How do I solve a DE in maple it shows me an error

I cant get the error. Any one can help me?

restart;
with(plots);
r := 0.5e-2; k := 10000; a := .4; alpha := .25; epsilon := 0.2e-1; mu := 0.4e-1; delta := 0.3e-2; Lambda := 0.2e-1;
beta[2] := .45; beta[1] := .2; c[1] := 2; c[2] := 5; w[1] := 10; w[2] := 30; T := 3;
u[1] := min(max(0, z), 1); z := beta[2]*s(t)*i(t)*(lambda[2](t)-lambda[1](t))/(w[1]*(s(t)+i(t)+e(t))); u[2] := min(max(0, c), 1); c := (beta[1]*s(t)*p(t).(lambda[2](t)-lambda[1](t)))/(w[2]*(a+p(t)))+(lambda[2](t).e(t)+(i(t)+alpha.e(t)).lambda[3](t)-(gamma.i(t)+p(t)).lambda[4](t))/w[2]; 

sys := diff(s(t), t) = r*s(t)*(1-(s(t)+i(t)+e(t))/k)-beta[1]*s(t)*p(t)*(1-u[2])/(a+p(t))-beta[2]*s(t)*i(t)*(1-u[1])/(s(t)+i(t)+e(t)), diff(e(t), t) = beta[1]*s(t)*p(t)*(1-u[2])/(a+p(t))+beta[2]*s(t)*i(t)*(1-u[1])/(s(t)+i(t)+e(t))-(mu+alpha+u[2])*e(t), diff(i(t), t) = (alpha+u[2]).e(t)-(mu+epsilon+u[2])*i(t), diff(p(t), t) = Lambda+(epsilon+u[2]).i(t)-delta*p(t), diff(lambda[1](t), t) = -lambda[1](t)*(r*(1-(2*s(t)+i(t)+e(t))/k)-beta[1]*p(t)*(1-u[2])/(a+p(t))-beta[2]*i(t)*(1-u[1])/(s(t)+i(t)+e(t)))-lambda[2](t).(beta[1]*p(t)*(1-u[2])/(a+p(t))-beta[2]*i(t)*(1-u[1])/(s(t)+i(t)+e(t))), diff(lambda[2](t), t) = -c[1]+lambda[1](t)*r*s(t)/k+lambda[2](t)*(mu+alpha+u[2])-(1-u[2]).alpha.lambda[3](t), diff(lambda[3](t), t) = -c[2]+lambda[1](t).(r*s(t)/k+beta[2]*s(t)*(1-u[1])/(s(t)+i(t)+e(t)))-lambda[2](t)*beta[2]*s(t)*(1-u[1])/(s(t)+i(t)+e(t))+lambda[3](t)*(u[2]+mu+gamma)-lambda[4](t).gamma.(1-u[2]), diff(lambda[4](t), t) = ((lambda[1](t).beta[1])*s(t).a.(1-u[2]))/(a+p(t))^2-((lambda[2](t).beta[1])*s(t).a.(1-u[2]))/(a+p(t))^2-lambda[4](t)*(delta+u[2]), s(0) = 1000, e(0) = 10, i(0) = 0, p(0) = 100, lambda[1](T) = 0, lambda[2](T) = 0, lambda[3](T) = 0, lambda[4](T);
p1 := dsolve({sys}, type = numeric, abserr = 0.1e-3, maxmesh = 2400);
Error, (in fproc) unable to store '-1.*HFloat(0.0)[1]' when datatype=float[8]
p2o := odeplot(p1, [t, i(t)], 0 .. 2, numpoints = 100, labels = ["Time (months)", " infectious "*`Maize"`], labeldirections = [horizontal, vertical], style = line, color = red, axes = boxed);
Error, (in plots/odeplot) input is not a valid dsolve/numeric solution
 

Please Wait...