Question: RE: cancelling the same term in numerator/denominator

Hello there, 

Would you please have a look at this question?

I got the answer in the 'eq_4_35', but what I wanted to see is the 'desired' expression. 

Somehow, the term '3*C' doesn't want to go away from the 'x__0' term, thus I wonder there is a way to cancel the term in the expression. 


 

restart;

eq_4_34 := x__alpha = C*x__a - C/2 * (x__b + x__c);

x__alpha = C*x__a-(1/2)*C*(x__b+x__c)

(1)

eq_4_33 := x__0 = 1/3*(x__a + x__b + x__c);

x__0 = (1/3)*x__a+(1/3)*x__b+(1/3)*x__c

(2)

eq_4_33aux := X__sub = (x__b + x__c);

X__sub = x__b+x__c

(3)

attempt2 := algsubs((x__b + x__c) = X__sub, eq_4_33);

x__0 = (1/3)*x__a+(1/3)*X__sub

(4)

attempt3 := X__sub = solve(attempt2, X__sub);

X__sub = -x__a+3*x__0

(5)

eq_4_34x := x__alpha = algsubs((x__b + x__c) = 3*x__0 - x__a, rhs(eq_4_34));

x__alpha = -(1/2)*C*(-x__a+3*x__0)+C*x__a

(6)

eq_4_35 := x__a = simplify(solve(eq_4_34x, x__a));

x__a = (1/3)*(3*C*x__0+2*x__alpha)/C

(7)

desired:= x__a = x__0 + (2*x__alpha)/(3*C);

x__a = x__0+(2/3)*x__alpha/C

(8)

 


 

Download Q20201005_2.mw

Please Wait...