Question: How to plot absolute advantage of option A over option B

Dear community,

this is a related questio to "Determine zeros, indifference curve of two levels, numerical approximation".

I am  trying to model the advantage of corporate taxation (final asset value: V_TEV) over partnership taxation (final asset value: V_P).
I would like to plot the absolute advantage of corporate taxation (VT=V_TEV-V_P) as a function of income (E) and retention period (T). Here x=E, Y=T. I alread plotted the VT. However, Id like to have the graph differently:
I would like to construct the graph in such a way that the absolute wealth advantage VT can be read from the ordinate. Can someone please help me with that?

Here are the formulars, the study is based on:

E := 'E'
h := 4                     
m := 0.035
g:= h*m            
k := 0.15
a := 0.25;
F_ANR := 4*m;
r:= 0.1;
T := 'T';
ESt := piecewise
(E < 9984, 0,
E < 14926, (1008.7*(E - 9984)/10000 + 1400)*(E - 9984)/10000,
E < 58596, (206.43*(E - 14926)/10000 + 2397)*(E - 14926)/10000 + 938.24,
E < 277826, 0.42*E - 9267.53,
0.45*E - 17602.28);

GewSt := piecewise(E < 24500, 0, (E - 24500)*g)

stev := EStk/K

K := 0.6*E*(1 - k - g)*(1 + r*(1 - k - g))^T

EStk := piecewise(K < 9984, 0,
K < 14926, (1008.7*(K - 9984)/10000 + 1400)*(K - 9984)/10000,
K < 58596, (206.43*(K - 14926)/10000 + 2397)*(K - 14926)/10000 + 938.24,
K < 277826, 0.42*K - 9267.53,
0.45*K - 17602.28)

V_TEV := E*(1 + (-k - g))*(1 + r*(1 - k - g))^T*(1 - 0.6*stev)

Er := E + (E - ESt)*r

EStr := piecewise(Er < 9984, 0,
Er < 14926, (1008.7*(Er - 9984)/10000 + 1400)*(Er - 9984)/10000,
Er < 58596, (206.43*(Er - 14926)/10000 + 2397)*(Er - 14926)/10000 + 938.24,
Er < 277826, 0.42*Er - 9267.53,
0.45*Er - 17602.28);

srp := EStr/E

r_p := r*(1 - srp)

V_P := (E - ESt + GewSt - min(ESt, GewSt, E*F_ANR))*(1 + r_p)^T

VT := V_TEV - V_P

plot3d(VT, E = 0 .. 500000, T = 1 .. 15, axes = boxed)

Thank you so much in advance!! Rebekka

Please Wait...