Question: RootOf problem (explicit and allvalues APIs not fu...

Dear Maple community, 

I'm trying to solve a complex expression by taking its first-order derivative and finding the optimal solution. As a result, I'm getting a rootOf expression, which is further not solved by using explicit or allvalues APIs provided in the maple. Can you guys help me where I'm going wrong?

I'm attaching my code file as well for
 

restart

U[d] := Zeta[n]*(2^(2/3)*(theta[n]*lambda*A*beta[n])^(2/3)/(4*beta[n])-delta[n]*`λA`+U[n]+alpha[n])+Zeta[g]*(U[g]-delta[g](1-lambda)*A+tau*A+R+(-2*A*theta[g]*(lambda-1)*beta[g])^(2/3)/(4*beta[g]))+tau*A-A

Zeta[n]*((1/4)*2^(2/3)*(theta[n]*lambda*A*beta[n])^(2/3)/beta[n]-delta[n]*`λA`+U[n]+alpha[n])+Zeta[g]*(U[g]-delta[g](1-lambda)*A+tau*A+R+(1/4)*(-2*A*theta[g]*(lambda-1)*beta[g])^(2/3)/beta[g])+tau*A-A

(1)

FOC := diff(U[d], A)

(1/6)*Zeta[n]*2^(2/3)*theta[n]*lambda/(theta[n]*lambda*A*beta[n])^(1/3)+Zeta[g]*(-delta[g](1-lambda)+tau-(1/3)*theta[g]*(lambda-1)/(-2*A*theta[g]*(lambda-1)*beta[g])^(1/3))+tau-1

(2)

evala(simplify(FOC))

(1/6)*2^(2/3)*(theta[n]*lambda*A*beta[n])^(2/3)*Zeta[n]/(A*beta[n])-(1/6)*Zeta[g]*(-2^(2/3)*(-A*theta[g]*(lambda-1)*beta[g])^(2/3)+6*delta[g](1-lambda)*A*beta[g]-6*tau*A*beta[g])/(A*beta[g])+tau-1

(3)

NULL

NULL

xyz := solve(FOC = 0, A, explicit)

RootOf(-Zeta[n]*theta[n]*lambda*(-_Z*lambda*beta[g]*theta[g]+_Z*beta[g]*theta[g])^(1/3)+3*delta[g](1-lambda)*(theta[n]*lambda*_Z*beta[n])^(1/3)*2^(1/3)*(-_Z*lambda*beta[g]*theta[g]+_Z*beta[g]*theta[g])^(1/3)*Zeta[g]-3*(theta[n]*lambda*_Z*beta[n])^(1/3)*2^(1/3)*(-_Z*lambda*beta[g]*theta[g]+_Z*beta[g]*theta[g])^(1/3)*tau*Zeta[g]+(theta[n]*lambda*_Z*beta[n])^(1/3)*lambda*Zeta[g]*theta[g]-3*tau*(theta[n]*lambda*_Z*beta[n])^(1/3)*2^(1/3)*(-_Z*lambda*beta[g]*theta[g]+_Z*beta[g]*theta[g])^(1/3)-(theta[n]*lambda*_Z*beta[n])^(1/3)*Zeta[g]*theta[g]+3*(theta[n]*lambda*_Z*beta[n])^(1/3)*2^(1/3)*(-_Z*lambda*beta[g]*theta[g]+_Z*beta[g]*theta[g])^(1/3))

(4)

allvalues(xyz)

RootOf(-Zeta[n]*theta[n]*lambda*(-_Z*lambda*beta[g]*theta[g]+_Z*beta[g]*theta[g])^(1/3)+3*delta[g](1-lambda)*(theta[n]*lambda*_Z*beta[n])^(1/3)*2^(1/3)*(-_Z*lambda*beta[g]*theta[g]+_Z*beta[g]*theta[g])^(1/3)*Zeta[g]-3*(theta[n]*lambda*_Z*beta[n])^(1/3)*2^(1/3)*(-_Z*lambda*beta[g]*theta[g]+_Z*beta[g]*theta[g])^(1/3)*tau*Zeta[g]+(theta[n]*lambda*_Z*beta[n])^(1/3)*lambda*Zeta[g]*theta[g]-3*tau*(theta[n]*lambda*_Z*beta[n])^(1/3)*2^(1/3)*(-_Z*lambda*beta[g]*theta[g]+_Z*beta[g]*theta[g])^(1/3)-(theta[n]*lambda*_Z*beta[n])^(1/3)*Zeta[g]*theta[g]+3*(theta[n]*lambda*_Z*beta[n])^(1/3)*2^(1/3)*(-_Z*lambda*beta[g]*theta[g]+_Z*beta[g]*theta[g])^(1/3))

(5)

NULL

Download RootOf_Maple2.mw

reference. 

Please Wait...