Question: ODE with complex variable

Dear Maplers

Consider the follwoing differential equation

Deq:=(K*( Q*sinh(K)*cosh(Q)-K*cosh(K)*sinh(Q))*(1+s*K^2)
   +p*(-4*K^2*Q*(K^2+Q^2)
       +Q*(Q^4+2*K^2*Q^2+5*K^4)*cosh(K)*cosh(Q)
       -K*(Q^4+6*K^2*Q^2+K^4)*sinh(K)*sinh(Q)));

pp := 0.077;
ss := 0; 

ode:= diff(Q(K), K) = eval(subs(Q=Q(K),-(diff(Deq, K))/(diff(Deq, Q))),[p=pp,s=ss]);

I aim to solve this DE numerically. Note that K and Q are complex variable and K varies from 0.1.e-5*I to 20.+1.e-5*I

in addition,

Q(0)=1e-10+1e-10*I

I tried dsolve. but it does not get back correct solutions

sol1 := dsolve({ode,Q(0)=1e-15+1e-15*I}, numeric, method=rkf45, output = listprocedure, abserr = 1.*10^(-6), relerr = 1.*10^(-6), range=0.0+1e-5*I .. 10.0+1e-5*I )

for example sol1(2.0+1e-5*I) return nothing

How can I solve this equation?

Please Wait...