Hello,
I am trying to solve the self similarity problem for external natural convection which is the following coupled problem
- 3/4*F(eta)*Theta(eta)' = Theta(eta)''
- 1/2 (F(eta)')^2 - 3/4 F(eta)*F(eta)'' = Pr*(Theta(eta) - F(eta)''')
where Pr is a constant and ()' denotes differentiation with respect to eta. The boundary conditions are:
- at eta = 0, F = 0, F'=0, Theta = 1
- at eta -> infinity, F' = 0, Theta = 0
I tried the following but I cannot obtain a solution


|
(1) |

|
(2) |

> |
eq:= 3/4*F(eta)*diff(theta(eta),eta) = diff(theta(eta),eta,eta),1/Pr*(1/2*diff(F(eta),eta)^2 - 3/4*F(eta)*diff(F(eta),eta,eta)) = -diff(F(eta),eta,eta,eta) + theta(eta)
|

|
(3) |


> |
bcs := F(0) = 0, theta(0)=1, D(F)(0)=0,theta(etamax)=0,D(F)(etamax)=0
|

|
(4) |

> |
sol:=dsolve([eq,bcs],[F(eta),theta(eta)])
|

|
Download wip.mw