Question: Limit function sought

In the attached file, (6) is stated as "false." However, it is possible to prove with pen and paper that term1 = term2. In (5), the limit function is sought but not determined.
What am I doing wrong?test1.mw
 

restart

term1 := (2*cos(2^n*x)+1)/(2*cos(x)+1)

(2*cos(2^n*x)+1)/(2*cos(x)+1)

(1)

term2 := product(2*cos(2^k*x)-1, k = 0 .. n-1)

product(2*cos(2^k*x)-1, k = 0 .. n-1)

(2)

term3 := term1*(2*cos(2^n*x)-1)/(2*cos(x)-1)

(2*cos(2^n*x)+1)*(2*cos(2^n*x)-1)/((2*cos(x)+1)*(2*cos(x)-1))

(3)

simplify(term3)

(1+2*cos(2^(1+n)*x))/(1+2*cos(2*x))

(4)

limit((1+2*cos(2^(1+n)*x))/(1+2*cos(2*x)), n = infinity)

limit((1+2*cos(2^(1+n)*x))/(1+2*cos(2*x)), n = infinity)

(5)

is(term1 = term2)

false

(6)

NULL


 

Download test1.mw

 

Please Wait...