MaplePrimes Questions

Recently I discovered you can get the wolfram language and Mathematica for free if you buy a Raspberry Pi. 

Will there be something similar with Maple?

I'm guessing since Mathematica has secured a contract with Raspberry Pi, that would exclude competitors, ie Maple

Dear experts,

I am sorry to bother you again with different questions. I am attempting to get a solution with various methods so that I can grasp my problem as clear as possible. 

I am attempting maximizing this problem, so I am looking for functional solution of c(t). However, as you can see, in the optimization problem there is one bothering expression, which is a integral of c(h) from 0 to t. 

I looved optimal control theory book, but still I could not find a protocol example. 

 

int([int(e^(-rh)*[log(c(h)) + w - p*c(h)], h = 0 .. t)]*b*[int(c(h), h = 0 .. t)]*e^(-b*int(c(h), h = 0 .. t)), t = 0 .. infinity) 

 

How shall I approach this problem with Euler Lagrange in Maple? Thank you

 

Hi

I am new to parallel computing, but as my current desktop is struggling with caclulating Groebner bases (i've been locked out for most of a week), I've contacted my universities center for scientific computing in the hope that they could do the caclulations.

However, I've been told that maple doesn't run in a distributed-memory parallel sense; as parallelisation in maple is very new - and i couldn't find discussion of this in the documentation - I thought it would be best to ask here if it does.

Secondarily can commands from the GB package be implemented in a way that would benefit?
if not can other similar commands like solve or eliminate?

I have a condition delta(k-r-1);k and  r are integers;

if k-r-1=0,then delta(k-r-1)=1;

if k-r-1 not equal to 0,then delta(k-r-1)=0;

How to write this in if statement?

 

pdsolveComesUpWithComplexResult.mw

I'm struggling to get a simple answer out of pdsolve solving this PDE:  

eqn := Mu*diff(`ξr`(r, t), t, t) = kappa*diff(`ξr`(r, t), r, r);
ic := `ξr`(r, 0) = sin(Pi/(2*r)), D[2](`ξr`)(r, 0) = 0;
bc := `ξr`(0, t) = 0, D[1](`ξr`)(1, t) = 0;
sol := (pdsolve([eqn, ic, bc], Zeta(r, t)) assuming (0 < kappa, 0 < Mu));

The outcome pdsolve comes up with is rather complex, with summation and integral. To my best knowledge, the simple solution of this PDE is:

sin(Pi*r/2)*cos(1/2*sqrt(k/m)*Pi*t)

How can I get this simple solution out of pdsolve? 

Any suggestion is welcome.

Wouter
 

The worksheet below animates a hamster running back and forth on a linear floor within a wheel. Its motion is such that the wheel remains stationary.

What math would describe the hamster running back and forth such that the wheel oscillates with a constant frequency and the floor's vertical angle oscillates between plus and minus an angle greater than zero and less than 2 Pi?

Hamster_in_wheel.mw

How is it possible in Maple to keep hold of pre determined results for comparison with subsequent results so that a recursive decision can be made to either modify the list of “kept” data or to continue to the next calculation, etc... ?

Example: a simple “subtract or double” sequence. If subtracting (say 1) from the current number would result in a term we already have,  then double it instead, and start over again with subtraction.

Formally: a(0)=0, a(1)=1, and for n>=1,

a(n+1) = a(n)-1 if that number has not been found already, else a(n+1)=2*a(n).

0,1,2,4,3,6,5,10,9,8,7,14,13,12,11,22.....

The arithmetic operations are facile but how to organise the keeping and comparison process??

David.

 

I want to enter an equation because I can't upload an image, so a brief description is as follows:
p is a function of x,y, and the partial derivative of p with respect to y is zero at y=h
What is the code for this equation?

ode := D(c)(t) = (ln(c(t)) + w - p*c(t))*(c(t)(t + 1/int(c(h), h = 0 .. t)) + int(c(h), h = 0 .. t))/(p - 1/c(t))

 

I have such differential equation derived from Euler-Lagrange condition of calculus of variation problem. 

I tried to solve it, but it says there are two c(t) and c(h). c(t) is what I want to get.

 

Thank you

; restart; with(plots); _local(O); P := b*x*cos(phi)+a*y*sin(phi)-a . b = 0; P := b x cos(phi) + a y sin(phi) - a . b = 0 Q := a*x*sin(phi)-b*y*cos(phi)-c^2*sin(phi)*cos(phi) = 0; 2 Q := a x sin(phi) - b y cos(phi) - c sin(phi) cos(phi) = 0 M := op(solve([P, Q], [x, y])); M := [subs(M, x), subs(M, y)]; X := `&-+`(P/sqrt(b^2*cos(phi)^2+a^2*sin(phi)^2)); Y := `&-+`(Q/sqrt(b^2*cos(phi)^2+a^2*sin(phi)^2)); #L'équation générale des coniques ayant pour axes MN et MT est, par rapport aux nouveaux axes de coordonnées X^2/A+Y^2/B-1 = (0*et)*par*rapport*aux*anciens; P^2/(A*(b^2*cos(phi)^2+a^2*sin(phi)^2))+Q^2/(B*(b^2*cos(phi)^2+a^2*sin(phi)^2))-1 = 0; 2 /b x cos(phi) + a y sin(phi) - a . b \ &-+|----------------------------------- = 0| | (1/2) | |/ 2 2 2 2\ | \\a sin(phi) + cos(phi) b / / --------------------------------------------- A 2 / 2 \ |a x sin(phi) - b y cos(phi) - c sin(phi) cos(phi) | &-+|-------------------------------------------------- = 0| | (1/2) | | / 2 2 2 2\ | \ \a sin(phi) + cos(phi) b / / + ------------------------------------------------------------ B - 1 = 0 #1.-Ecrivons que la conique (1) est tangente en O à Oy : il faut pour cela annuler le coefficient de y et le terme indépendant. #Nous obtenons 2 équations en A et B, d'où nous tirons : A=a² et B=c²cos(phi)² a := 10; b := 7; c := sqrt(a^2-b^2); phi := 4*Pi*(1/5); Ell := implicitplot(x^2/a^2+y^2/b^2-1 = 0, x = -11 .. 11, y = -8 .. 8, color = grey); O := [0, 0]; M := [a*cos(phi), b*sin(phi)]; vec := plot([O, M], color = black, thickness = 1); P := implicitplot(P, x = -20 .. 20, y = -20 .. 20, color = aquamarine); Q := implicitplot(Q, x = -20 .. 20, y = -20 .. 20); F1 := [(a+b)*cos(phi), (a+b)*sin(phi)]; F2 := [2*M[1]-F1[1], 2*M[2]-F1[2]]; F1F2 := plot([F1, F2], color = green, thickness = 3); ELL := implicitplot((b*x*cos(phi)+a*y*sin(phi)-a . b)^2/(a^2*(b^2*cos(phi)^2+a^2*sin(phi)^2))+(a*x*sin(phi)-b*y*cos(phi)-c^2*sin(phi)*cos(phi))^2/(c^2*cos(phi)^2*(b^2*cos(phi)^2+a^2*sin(phi)^2))-1 = 0, x = -20 .. 20, y = -20 .. 20, color = blue, thickness = 3); Hyp := implicitplot((b*x*cos(phi)+a*y*sin(phi)-a . b)^2/(b^2*(b^2*cos(phi)^2+a^2*sin(phi)^2))+(a*x*sin(phi)-b*y*cos(phi)-c^2*sin(phi)*cos(phi))^2/(-c^2*sin(phi)^2*(b^2*cos(phi)^2+a^2*sin(phi)^2))-1 = 0, x = -20 .. 20, y = -20 .. 20, color = black); dF1 := plottools[disk](F1, .3, color = red); dF2 := plottools[disk](F2, .3, color = red); cir1 := implicitplot(x^2+y^2 = (a+b)^2, x = -20 .. 20, y = -18 .. 18, color = pink); cir2 := implicitplot(x^2+y^2 = (a-b)^2, x = -10 .. 10, y = -4 .. 4, color = coral); asym1 := implicitplot((b*x*cos(phi)+a*y*sin(phi)-a . b)/b+(a*x*sin(phi)-b*y*cos(phi)-c^2*sin(phi)*cos(phi))/(c*sin(phi)) = 0, x = -20 .. 20, y = -18 .. 18, color = black, linestyle = DOT); asym2 := implicitplot((b*x*cos(phi)+a*y*sin(phi)-a . b)/b-(a*x*sin(phi)-b*y*cos(phi)-c^2*sin(phi)*cos(phi))/(c*sin(phi)) = 0, x = -20 .. 20, y = -18 .. 18, color = black, linestyle = DOT); tp := textplot([[M[1], M[2]+.8, "M"], [F1[1]-.8, F1[2], "F1"], [F2[1]+.8, F2[2]+.3, "F2"], [5, 15, "axe P"], [8, -10, "axe Q"]]); display([Ell, vec, P, Q, F1F2, cir1, cir2, ELL, Hyp, dF1, dF2, asym1, asym2, tp], scaling = constrained, axes = normal, axis = [gridlines = [1, color = blue]], xtickmarks = 0, ytickmarks = 0, view = [-20 .. 20, -20 .. 20], size = [500, 500]); #Eléments fixes : Ell, cir1, cir2, O #Parties mobiles : ELL, Hyp, P,Q, M,F1, F2, # FIGURE MOBILE n := 100; dt := 2*Pi/n; Phi := 0; P := b*x*cos(phi+dt)+a*y*sin(phi+dt)-a . b = 0; Q := a*x*sin(phi+dt)-b*y*cos(phi+dt)-c^2*sin(phi+dt)*cos(phi+dt) = 0; M := [cos(phi+dt)*(sin(phi+dt)^2*a*c^2+Typesetting[delayDotProduct](a . b, b, true))/(a^2*sin(phi+dt)^2+cos(phi+dt)^2*b^2), sin(phi+dt)*(-cos(phi+dt)^2*b*c^2+Typesetting[delayDotProduct](a . b, a, true))/(a^2*sin(phi+dt)^2+cos(phi+dt)^2*b^2)]; ELL := (b*x*cos(phi+dt)+a*y*sin(phi+dt)-a . b)^2/(a^2*(a^2*sin(phi+dt)^2+cos(phi+dt)^2*b^2))+(a*x*sin(phi+dt)-b*y*cos(phi+dt)-c^2*sin(phi+dt)*cos(phi+dt))^2/(c^2*cos(phi+dt)^2*(cos(phi+dt)^2*b^2+a^2))-1 = 0; NULL; display([Ell, cir1, cir2], scaling = constrained);

Hi, 

I was attempting to solve an ODE, but it does not turn out anything. It is a bit complicated ODE. dsolve turns nothing, and I tried little different specification for an end point or initial point, but it calculates like forever giving nothing. What shall I do?

 

ode := 0 = diff(y(x), x) + ((r + 2*x)*(p - y(x)^(-s)))/(-(b*y(x) - x^2)*s*y(x)^(-s - 1))

parameters(0 < r, 0 < p, b < 1 and 0 < b, 0 < s)

hi

can anyone help me with this error.

why maple2019 gives result of trigonometric function in terms of I.

snapshot attached

I am tryoing to optimize an integral which gives

Error, (in Optimization:-NLPSolve) invalid arguments

 

What is the proper sequence of commends which will yield the asymptoe of a given function of a single variable?

First 583 584 585 586 587 588 589 Last Page 585 of 2375