MaplePrimes Questions

Hello,

I've got the following problem: Sometimes when I let Maple compute an integral it gives a result which is much smaller than it should be. This happens even for rather simple integrals such as the product of a Gauss function and a 1/x-type function. Here's a minimal working example:

restart;
with(plots):
f := x -> exp(-x^2):
g := (x,a) -> 1/(1+abs(x-a)):
plot([f(x),g(x,3)],x=-3..10):
for a from 1 to 100 do
A[a] := int(f(x)*g(x,a),x=-infinity..a-1)
end do:
B:=[seq(A[a],a=1..100)]:
X:=[seq(a,a=1..100)]:
plot(X,B);

The plot it returns looks like this:

which is clearly wrong between around a=35 and a=60...

Does anyone have an idea how this can be repaired?

Hello,

I try to use the Explore function on a trigonometric expressions depending of 8 parameters. My aim is to study the influence of these parameters on the results.

However, i receive an error message and I didn't manage to troubleshoot it.

May you have a look of an extract of my code and see if you see the mistake ?

TestExplore.mw

Thanks a lot for your help.

 

 

Dear sir

 

I try the below program and it is not executing because of error and that error is " unable to match delimiters" 

Please can you varify it.

sol1 := dsolve([diff(diff(diff(f(eta),eta),eta),eta)+f(eta)*diff(diff(f(eta),eta),eta)+((2*n)/((n+1)))*(1-diff(f(eta),eta)^2) = 0, 1/(Pr) *diff(diff(theta(eta),eta),eta)+f(eta)*diff(theta(eta),eta)-((2*p)/((n+1)))diff(f(eta),eta)*theta(eta) = 0, f(0) = 0, D(f)(0) = 1+lambda*'@@'(D,2)(f)(0), D(f)(10) = 1, theta(0)=0, theta(0)=1+sigma*D(theta(0)),theta(10)=1], numeric, method = bvp);  plots[odeplot](sol1, [eta, `@@`(D,2)(f)(eta)], color = red,axes=boxed);

Dear Community,

Is there an explicit command to remove rows or columns from a DataFrame? I've only found the Append command. What's the easiest way to do it?

Tx in advance,

best regards

Andras

eq2 := -4*A[2]*cos(2*x)-16*A[4]*cos(4*x)-36*A[6]*cos(6*x)-64*A[8]*cos(8*x)+a*A[0]+cos(8*x)*a*A[8]+cos(6*x)*a*A[6]+cos(4*x)*a*A[4]+2*cos(2*x)*q*A[0]+cos(2*x)*a*A[2]+q*A[8]*cos(6*x)+q*A[8]*cos(10*x)+q*A[6]*cos(4*x)+q*A[6]*cos(8*x)+q*A[4]*cos(2*x)+q*A[4]*cos(6*x)+q*A[2]*cos(4*x)+q*A[2]

How to extract the co-fficent that do not have cos in it like

a*A[0]+q*A[2]

Dear all

I have a PDE and its analytical solution. I want to find the numerical solution by Finite Difference Method.

I duscratize the PDE and boundary condition and Could not able to solve them togethe.

Here is the file FEM-Nu.mw

of the implicit function sin(x+y)+sin(x) = y at x = Pi , y=0 of order 15? Here is one of the difficulties

restart; eval(implicitdiff(sin(x+y)+sin(x) = y, y, x$15), [x = Pi, y = 0]);
Error, (in expand/bigprod) Maple was unable to allocate enough memory to complete this computation. Please see ?alloc

Hi everybody,

I solve an ODE system numerically with the command

Tend := ….. :
sol := dsolve(MySys, numeric, method=rosenbrock, range=0..Tend):    # or rkf45

One of my colleagues wants the solution in array form for using it in a spreadsheet (namely Excel). 
Here is an example of what I do :
 
data := plottools:-getdata( plots:-odeplot(sol, […..], 0..Tend, refine = Q) )
:  # Q rational
result := data[3]:
ExcelTools:-Export (result, …)


To understand the following, you need to know that
the time step varies by several decades (at least 3 or 4). and that  numfun
is typically in the order of 10^5
 
When I ask Maple to construct  data , Maple seems to sample the solution 
sol
according to the local time step dsolve has selected (and probably some other parameters ?)
Because this time step varies in very large proportions, the result is sometimes a concentration of points in regions where the solution is rapidly changing (which is desirable) … with some lacunarity in slow varying regions.

To obviate this, sometimes  poor appearance, I used to force Maple to compute the solution by regularly sampling the range
]0, Tend[  and combining this array with the original one (result
).
But this not satisfactory for I do not avoid lacunarity region (unless I proceed in some ad hoc way)

Here is my question :
Could you give me some elements about  the way odeplot adapts its sampling strategy according to the local time step, the budget N (the Q value I guess) and maybe numfun
?

Thank you in advance

Dear readers,

For a question for my students I want them to calculate tge resulting vector from two vectors. The student had to answer by giving the length and angle of the resulting vector.

For the question the vector angle is always larger as 180 derges, the student should for example give a result of 270 degrees.

Currently I'm using the following code:

$F1=100;#range(200,500,20);
$F2=100;#range(100,200,10);
$A1=45;#range(10,80,5);
$A2=45;#range(10,80,5);
$A1r=180+$A1;
$A2r=360-$A2;
$F1x=maple("cos(($A1r)*Pi/180)*$F1");
$F1y=maple("sin(($A1r)*Pi/180)*$F1");
$F2x=maple("cos(($A2r)*Pi/180)*$F2");
$F2y=maple("sin(($A2r)*Pi/180)*$F2");
$V1=maple("Vector(2,[($F1x),($F1y)])");
$V2=maple("Vector(2,[($F2x),($F2y)])");
$V3=maple("($V1)+($V2)");
$F3=maple("LinearAlgebra[Norm]($V3)");
$V0x=maple("Vector(2,[1,0])");
$A3=maple("LinearAlgebra[VectorAngle](($V0x),($V3))");
$A4=maple("evalf((($A3)*180/(Pi)))");

As you can see maple will always give an angle smaller than 180 degrees since the angle between two vectors is always 180 degrees or smaller.

Can anyone tell me how I should code this problem such that the rest for A4 will be 270 degrees rather than 90 degrees, as is given from the current way of coding.

Thank you in advance.

I have excuted a loop for i from.....by...while.....do l2:=NLPSolve(.......) with variables, t1,th,tl, etc. I need get the numerical result of theses variables and assign them to t1,th, etc. After execute a function with them. I have tried with op, map and assign, but the program don't understand the numerical value of variables. Why?. How can i assign theses numerical vaules?. Thanks! 

hi

please help to me for solve this equation via pdsolve?

thanks

dsove2.mw

restart

f := 1; k := 1; h := 1

PDE := diff((diff(rho*H(rho, z), rho))/rho, rho)+diff(H(rho, z), z, z)+k^2*H(rho, z) = f

-(H(rho, z)+rho*(diff(H(rho, z), rho)))/rho^2+(2*(diff(H(rho, z), rho))+rho*(diff(diff(H(rho, z), rho), rho)))/rho+diff(diff(H(rho, z), z), z)+H(rho, z) = 1

(1)

NULL

NULL

NULL

NULL

sol3 := dsolve([PDE, (D[2](H))(rho, -h) = 0, (D[2](H))(rho, 0) = 0], H(rho, z))

NULL



Download dsove2.mw

 

 

 

hi

in attached file below not answer found for dsolve?

please help me

thanks..

dsove.mw

restart

J := 1:

PDE := diff(T(z, t), z, z)-.2*(diff(T(z, t), t, t)) = int(.7703831837*(diff(T(z, tau), tau, tau))/(t-tau)^.3, tau = 0 .. t):

with(inttrans):

sol := laplace(PDE, t, s):

sol2 := subs([laplace(T(z, t), t, s) = U(z, t), T(z, 0) = sin(J*Pi*z), (D[2](T))(z, 0) = 0], sol)

diff(diff(U(z, t), z), z)-.2000000000*s^2*U(z, t)+.2000000000*s*sin(Pi*z) = -1.000000000*s^.3000000000*sin(Pi*z)+1.000000000*s^1.300000000*U(z, t)

(1)

sol3 := dsolve([sol2, (D[1](U))(0, t) = 0, (D[1](U))(1, t) = 0], U(z, t))

"sol3 := "

(2)

U(z, t) = invlaplace(rhs(sol3), s, t)

Error, invalid input: rhs expects 1 argument, but received 0

 

sol4 := simplify(subs(z = 0, rhs(sol3)))

Error, invalid input: rhs expects 1 argument, but received 0

 

``

``



Download dsove.mw

 

I'm trying to compute the tensor product of two column vectors as

 

with(LinearAlgebra):

A:=Matrix([[1/sqrt(2)],[0],[0],[1/sqrt(2)]]);

KroneckerProduct(A,A);

 

And the output is a column vector with entries: "16 x 1 Matrix", "Data Type: Anything", "Storage: rectangular", "Order: Fortran_order"

 

The Maple documentation indicates that this function should output the result of the kronecker tensor product of the input matrices, and I've followed the same form as the examples in the documentation... Does anyone know why this isn't working as it should?

> restart;
> libname = [shootlib, libname];
> with(shoot);
Error, invalid input: with expects its 1st argument, pname, to be of type {`module`, package}, but received shoot
> with(plots);
Pr := 10; s = -.1; lambda := 0; Gr := 1.0; Gm := 1.0; beta := -1.20;
10
s = -0.1
0
1.0
1.0
-1.20
> M := 0.; z := .1; Xi := .5; Nt := .5; Nb := .2; l := 5; Nr := .5; epsilon1 := .2; epsilon2 := .2;
0.
0.1
0.5
0.5
0.2
5
0.5
0.2
0.2
> Prff := Pr/(1+4.*N*(1/3));
10
-----------------
1 + 1.333333333 N
> FNS := {f(eta), h(eta), r(eta), u(eta), v(eta), theta(eta), `ϕ`(eta)};
{f(eta), h(eta), r(eta), u(eta), v(eta), theta(eta), ϕ(eta)}
> ODE := {diff(h(eta), eta)+.75*l*f(eta)*h(eta)-(1/4)*l*u(eta)*epsilon2-Nt*(.75*f(eta)*r(eta)-(1/4)*u(eta)*epsilon1+Nb*r(eta)*h(eta)+Nt*r(eta)*r(eta))/Nb = 0, .75*f(eta)*r(eta)+diff(r(eta), eta)-(1/4)*u(eta)*epsilon1+Nb*r(eta)*h(eta)+Nt*r(eta)*r(eta) = 0, diff(v(eta), eta)+3*(f(eta)*v(eta)-u(eta)*u(eta))/(4*Pr)-(M+lambda)*u(eta)+theta(eta)-Nr*`ϕ`(eta) = 0, diff(f(eta), eta) = u(eta), diff(u(eta), eta) = v(eta), diff(theta(eta), eta) = r(eta), diff(`ϕ`(eta), eta) = h(eta)};
/ / d \
{ 0.75 f(eta) r(eta) + |----- r(eta)| - 0.05000000000 u(eta)
\ \ deta /

2 / d \ 3
+ 0.2 r(eta) h(eta) + 0.5 r(eta) = 0, |----- v(eta)| + -- f(eta) v(eta)
\ deta / 40

3 2 / d \
- -- u(eta) + theta(eta) - 0.5 ϕ(eta) = 0, |----- h(eta)|
40 \ deta /

+ 3.75 f(eta) h(eta) - 0.1250000000 u(eta) - 1.875000000 f(eta) r(eta)

2
- 0.5000000000 r(eta) h(eta) - 1.250000000 r(eta) = 0,

d d d
----- f(eta) = u(eta), ----- u(eta) = v(eta), ----- theta(eta) = r(eta),
deta deta deta

d \
----- ϕ(eta) = h(eta) }
deta /
> IC := {f(0) = s, h(0) = xi, r(0) = tau, u(0) = 0, v(0) = alpha(0), theta(0) = 1-(1/4)*epsilon1, `ϕ`(0) = (1/4)*epsilon2};
{f(0) = s, h(0) = xi, r(0) = tau, u(0) = 0, v(0) = alpha(0),

theta(0) = 0.9500000000, ϕ(0) = 0.05000000000}
> L := 2;
2
> BC = {u(L) = 0, theta(L) = 0, `ϕ`(L) = 0};
BC = {u(2) = 0, theta(2) = 0, ϕ(2) = 0}
> S := Shoot(ODE, IC, BC, FNS, [alpha = .42453091564332, tau = -.21166705749821127, xi = -.4944583739651814]);
/ / / d \
Shoot|{ 0.75 f(eta) r(eta) + |----- r(eta)| - 0.05000000000 u(eta)
\ \ \ deta /

2 / d \ 3
+ 0.2 r(eta) h(eta) + 0.5 r(eta) = 0, |----- v(eta)| + -- f(eta) v(eta)
\ deta / 40

3 2 / d \
- -- u(eta) + theta(eta) - 0.5 ϕ(eta) = 0, |----- h(eta)|
40 \ deta /

+ 3.75 f(eta) h(eta) - 0.1250000000 u(eta) - 1.875000000 f(eta) r(eta)

2
- 0.5000000000 r(eta) h(eta) - 1.250000000 r(eta) = 0,

d d d
----- f(eta) = u(eta), ----- u(eta) = v(eta), ----- theta(eta) = r(eta),
deta deta deta

d \
----- ϕ(eta) = h(eta) }, {f(0) = s, h(0) = xi, r(0) = tau, u(0) = 0,
deta /

v(0) = alpha(0), theta(0) = 0.9500000000, ϕ(0) = 0.05000000000}, BC,

{f(eta), h(eta), r(eta), u(eta), v(eta), theta(eta), ϕ(eta)}, [

alpha = 0.42453091564332, tau = -0.21166705749821127,

\
xi = -0.4944583739651814]|
/
RungeKutta(ODE, BC, alpha = .42453091564332, tau = -.21166705749821127, xi = -.4944583739651814, output=plot);
/ / / d \
RungeKutta|{ 0.75 f(eta) r(eta) + |----- r(eta)| - 0.05000000000 u(eta)
\ \ \ deta /

2 / d \ 3
+ 0.2 r(eta) h(eta) + 0.5 r(eta) = 0, |----- v(eta)| + -- f(eta) v(eta)
\ deta / 40

3 2 / d \
- -- u(eta) + theta(eta) - 0.5 ϕ(eta) = 0, |----- h(eta)|
40 \ deta /

+ 3.75 f(eta) h(eta) - 0.1250000000 u(eta) - 1.875000000 f(eta) r(eta)

2
- 0.5000000000 r(eta) h(eta) - 1.250000000 r(eta) = 0,

d d d
----- f(eta) = u(eta), ----- u(eta) = v(eta), ----- theta(eta) = r(eta),
deta deta deta

d \
----- ϕ(eta) = h(eta) }, BC, alpha = 0.42453091564332,
deta /

\
tau = -0.21166705749821127, xi = -0.4944583739651814, output = plot|
/
>

 

 

Dear sir 

in the above problem im geiitng the problem with , with(shoot) command and even it is not executing at

S := Shoot(ODE, IC, BC, FNS, [alpha = .42453091564332, tau = -.21166705749821127, xi = -.4944583739651814]) this command, here alpha,tau and zi variable should change.

> restart;
> with(plots);
> Eql := diff(f(eta), eta, eta, eta)+.5*f(eta)*(diff(f(eta), eta, eta)) = 0;
/ d / d / d \\\ / d / d \\
|----- |----- |----- f(eta)||| + 0.5 f(eta) |----- |----- f(eta)|| = 0
\ deta \ deta \ deta /// \ deta \ deta //
> blt := 10;
10
> bcs1 := f(0) = f0, (D(f))(0) = 0, (D(f))(blt) = 1;
f(0) = f0, D(f)(0) = 0, D(f)(10) = 1
> L := [0];
[0]
> for k to 1 do R := dsolve(eval({Eql, bcs1}, f0 = L[k]), f(eta), numeric, output = listprocedure); X1 || k := rhs(R[3]); X2 || k := rhs(R[4]) end do;
[
[eta = proc(eta) ... end;, f(eta) = proc(eta) ... end;,
[

d
----- f(eta) = proc(eta) ... end;,
deta

d / d \ ]
----- |----- f(eta)| = proc(eta) ... end;]
deta \ deta / ]
proc(eta) ... end;
proc(eta) ... end;
> print([X2], [1 .. 1, 0]);

 

dear sir/madam

 

in the above problem i should get the asnser (at print line) but its not getting so please can you tell me why it is not getting.

First 1070 1071 1072 1073 1074 1075 1076 Last Page 1072 of 2428