MaplePrimes Questions

es posible obtener la función del contorno de un dominio convexhull ?

 

 

 

 of equations from a set of solution after solve ?

what are these ways?

 

[a = s/RootOf(_Z^2-s^2+s), b = -RootOf(_Z^2-s^2+s)/s, c = RootOf(_Z^2-s^2+s)]

diff(F(x,F(x)), x);

 

how to differentiate this?

 

(D[1](F))(x, F(x))+(D[2](F))(x, F(x))*(diff(F(x), x))

 

how to find (D[1](F))(x, F(x)) and (D[2](F))(x, F(x)) ?

 

i guess need define new calculus for two variables

Limit((F(x+h,F(x+h)) - F(x,F(x)))/h, h = 0);

Limit((F(x+h,F(x)) - F(x,F(x)))/h, h = 0);
Limit((F(x,F(x+h)) - F(x,F(x)))/h, h = 0);

Limit((F(x+h,F(x,y)) - F(x,F(x,y)))/h, h = 0);
Limit((F(x,F(x+h,y)) - F(x,F(x,y)))/h, h = 0);

 

if inside F(x) is F(x,y)

it seems need to find the basic definition of F(x,y) first

if i define F(x,y) as

F := (x,y) -> min(x,y)/max(x,y);

 

i may be wrong, how to differentiate correctly?

Hi, friends!

I'm not a math =) but it is interesting

How can i solve this equation like the gambler's ruin with Maple's function rsolve

f(n)=0.5*f(n-1)+0.5*f(n+1), f(0)=1, f(6)=0

rsolve({f(n)=0.5*f(n-1)+0.5*f(n+1), f(0)=1, f(6)=0}, {f});

it returns this 

{f(n) = 7 f(5) - f(5) (n + 1)}

I don't understand :( 

for example Wolfram Alpha return the true result

Sorry for the uninformative title. I've never used Maple, but I'm willing to buy a student license and learn it. But before spending too much effort and money I need to know if it suits my needs.

Basically what I need to do is:

1) I have a positive definite symmetric matrix of size nxn, where n can range from 2 to inf. I don't know the elements, except the fact that the diagonal has ones everywhere. All I know is that the elements out of the diagonal are in the range [0,1)

2) I have to compute the lower triangular cholesky decomposition of this matrix, lets call it L.

3) I need to subtract from each element of L the mean of the elements in the respective column. Lets call this matrix L*

4) Then I need to evaluate another nxn matrix computed from the elements of L* following a simple pattern.

5) Finally I need to find the eigenvalues of this last matrix.

What I would ideally want is to get a symbolic representation of the n eigenvalues as symbolic functions of the (unknown) elements of the matrix at point 1.

I can drop the assumption of n being unknown, i.e. fix n=3 and get the 3 functions that, after replacing the right values, give me the eigenvalues, then fix n=4 and get 4 functions, etc.

Is this possible to do in maple?

Thank you

Hello,

I try to use a Catmull-Rom spline which has to match on several points.

I use a code extracted from the book "Geometry and curves with maple".

Here you can find an extract which is visible from google book :

I have slightly modified the initial procedure crom_2d. I didn't find the error in my procedure. May you help me to find the blocking point of my procedure ?

Here I attached my code:

CalculSplineMatmull-Rom.mw

Thank you for your help.

Compute the following multiple integral exactly and/or with 10 correct significant digits

Int(  exp( - add(x[i],i=1..10)^3),  seq(x[i]=0..1, i=1..10) );

  The problem is suggested by a previous post.

Hello everyone !

I have a problem when I want to calculate the following multiple integration numerically:

>evalf(Int(exp(sum(x[i],i=1..6)^2),[seq(x[i]=-1..1,i=1..6)]));
  value(%);

It doesn't work. But when I replace sum(x[i],i=1..6)^2 with sum(x[i],i=1..6), it works. Is there any feasible solution to my problem ?

Thank you for reading !

 

Dear Friends

In differential expressions(See Maple file) how to find coefficiets of dependent variable "u(x,t)" and "v(x,t)" and of their differentials ? There is command "dcoeffs(function)", but that work for single dependent variable only but in our case there are two dependent variables in consideration. There are other options like "indets", "specindex" but those do not work.

 


with(PDEtools):

DepVars; -1; [u(x, t), v(x, t), r[1](t), r[2](t), s[1](t), s[2](t), p[1](t), p[2](t), alpha[1](x, t), beta[1](x, t), beta[2](x, t), delta[1](x, t), delta[2](x, t)]

[u(x, t), v(x, t), r[1](t), r[2](t), s[1](t), s[2](t), p[1](t), p[2](t), alpha[1](x, t), beta[1](x, t), beta[2](x, t), delta[1](x, t), delta[2](x, t)]

(1)

alias(u = u(x, t), v = v(x, t), r[1] = r[1](t), r[2] = r[2](t), s[1] = s[1](t), s[2] = s[2](t), p[1] = p[1](t), p[2] = p[2](t), alpha[1] = alpha[1](x, t), beta[1] = beta[1](x, t), beta[2] = beta[2](x, t), delta[1] = delta[1](x, t), delta[2] = delta[2](x, t))

u, v, r[1], r[2], s[1], s[2], p[1], p[2], alpha[1], beta[1], beta[2], delta[1], delta[2]

(2)

(diff(r[1], t))*(-s[1]*u*(diff(u, x))-p[1]*((diff(u, x))*v+u*(diff(v, x)))-alpha[1]*(diff(u, x))-beta[1]*u-delta[1])/r[1]+r[1]*(diff(alpha[1]*(diff(u, x))+beta[1]*u+delta[1], x, x))+(diff(s[1], t))*u*(diff(u, x))+s[1]*(alpha[1]*(diff(u, x))+beta[1]*u+delta[1])*(diff(u, x))+s[1]*u*(diff(alpha[1]*(diff(u, x))+beta[1]*u+delta[1], x))+(diff(p[1], t))*((diff(u, x))*v+u*(diff(v, x)))+p[1]*((diff(alpha[1]*(diff(u, x))+beta[1]*u+delta[1], x))*v+(diff(u, x))*(alpha[1]*(diff(v, x))+beta[2]*v+delta[2])+(alpha[1]*(diff(u, x))+beta[1]*u+delta[1])*(diff(v, x))+u*(diff(alpha[1]*(diff(v, x))+beta[2]*v+delta[2], x)))+(diff(alpha[1], t))*(diff(u, x))+alpha[1]*(diff(alpha[1]*(diff(u, x))+beta[1]*u+delta[1], x))+(diff(beta[1], t))*u+beta[1]*(alpha[1]*(diff(u, x))+beta[1]*u+delta[1])+diff(delta[1], t)

(diff(r[1], t))*(-s[1]*u*(diff(u, x))-p[1]*((diff(u, x))*v+u*(diff(v, x)))-alpha[1]*(diff(u, x))-beta[1]*u-delta[1])/r[1]+r[1]*((diff(diff(alpha[1], x), x))*(diff(u, x))+2*(diff(alpha[1], x))*(diff(diff(u, x), x))+alpha[1]*(diff(diff(diff(u, x), x), x))+(diff(diff(beta[1], x), x))*u+2*(diff(beta[1], x))*(diff(u, x))+beta[1]*(diff(diff(u, x), x))+diff(diff(delta[1], x), x))+(diff(s[1], t))*u*(diff(u, x))+s[1]*(alpha[1]*(diff(u, x))+beta[1]*u+delta[1])*(diff(u, x))+s[1]*u*((diff(alpha[1], x))*(diff(u, x))+alpha[1]*(diff(diff(u, x), x))+(diff(beta[1], x))*u+beta[1]*(diff(u, x))+diff(delta[1], x))+(diff(p[1], t))*((diff(u, x))*v+u*(diff(v, x)))+p[1]*(((diff(alpha[1], x))*(diff(u, x))+alpha[1]*(diff(diff(u, x), x))+(diff(beta[1], x))*u+beta[1]*(diff(u, x))+diff(delta[1], x))*v+(diff(u, x))*(alpha[1]*(diff(v, x))+beta[2]*v+delta[2])+(alpha[1]*(diff(u, x))+beta[1]*u+delta[1])*(diff(v, x))+u*((diff(alpha[1], x))*(diff(v, x))+alpha[1]*(diff(diff(v, x), x))+(diff(beta[2], x))*v+beta[2]*(diff(v, x))+diff(delta[2], x)))+(diff(alpha[1], t))*(diff(u, x))+alpha[1]*((diff(alpha[1], x))*(diff(u, x))+alpha[1]*(diff(diff(u, x), x))+(diff(beta[1], x))*u+beta[1]*(diff(u, x))+diff(delta[1], x))+(diff(beta[1], t))*u+beta[1]*(alpha[1]*(diff(u, x))+beta[1]*u+delta[1])+diff(delta[1], t)

(3)

In above differential expressions how to find coefficiets of dependent variable "u(x,t)" and "v(x,t)" and of their differentials ? There is command "dcoeffs(expr,u(x,t))", but that work for single dependent variable only but in our case there are two dependent variables in consideration. There are other options like "indets", "specindex" but those do not work.

``


Download Coefficients_in_differential_expression.mw

Hello

I have an SEIR model.

Equation 5 is for disease death but I would like to plot the cumulative numbers of disease death which will be the integral of Equation 5. I added the integral inside odeplot but it is not working. Any idea  about  how to compute the integral ?

Maple code is attached

Thank you

code.mw

Found a strange behaviour in Mapke 2015 of the sqrt-function after loading the GRTensor package:

the square-root of a non-square integer, e.g. sqrt(5), does not terminate. 5^(1/2) instead works fine.

Can be reproduced with Maple 18, but not with Maple 11.

I consider this a serious bug, as it makes any expressions containing such roots useless.

As it worked with Maple 11 I am inclined to see it as your fault.

 

Let's say I've got somehow a result of the product:

exp(k*t)*cos(t*omega)

as series expression and I want to factor out the series of

exp(k*t)

in order to get

cos(t*omega)

How can I do that with Maple?

In PDEtools, suppose to I wish assign zero value to certain first order partial derivative such that higher order derivatives automatically vanish in subsequent excutions, how I can do that?

 

with(PDEtools):

alias(u = u(x, y, t))

u

(1)

Suppose we wish following derivative equal to zero,

diff(u, x) = 0

diff(u, x) = 0

(2)

If we use ":=" for value assignment we will get error. Under above assuption how can we make following derivatives zero?

diff(u, x, x); 1; diff(u, x, y); 1; diff(u, x, x, x, y)

diff(diff(u, x), x)

 

diff(diff(u, x), y)

 

diff(diff(diff(diff(u, x), x), x), y)

(3)

``

 

Download Assiging_Derivative.mw

I tried to load my document containing some notes, but then I got the message "There were problems during the loading process, Your worksheet may become incomplete", and as the message said my worksheet were incomplete. Is there a way to restore the document? I have tried following this and added the line it suggested:

http://www.maplesoft.com/support/help/Maple/view.aspx?path=worksheetmaybeincomplete

But it didn't work.

I have attached the file.

Noter.mw

I never expected that the reflected light direction of sun from moon in the sky would be so dificult to imagine ...

at the following article mentioned :

we derive an equation for the magnitude of the moon tilt illusion that can be applied to all con gurations of sun and moon in the sky.

THE MOON TILT ILLUSION

 

since the calculations contains many steps and high level mathematical formula , there is no way rather to recourse to maple (powerful math assistant )

I hope there was adaptations between a lots of functions and predefined schema of maple and this problem so that the calculations and visualization facilitated several times ?

your effort will be a graet present for all the people of the world that look to the moon crescent everytime !

 

First 1173 1174 1175 1176 1177 1178 1179 Last Page 1175 of 2428