MaplePrimes Questions

Hello,

I'm having some issues with this procedure it seems to take a very long time to evaluate. There is also an error in the Histogram I can't seem to fix... Does anybody know why? Any help would be greatly appreciated! Thank you in advance!

Kind regards,

Gambia man

Last_part2.mw

Hello everybody

I have a system of ODEs that are too large. I am trying to solve this system using Maple. The corrsponding file has been uploaded. I have 2 question. 1- Does anyone know what is the source of error? 2- Is this a high expectation for Maple to solve such a too big system of ODEs. Note: It makes a few minutes to run all the programm.

Thanks in advance

M.mw

Hello

i have an ODE like this:

I sove this ODE with plot order:

with(plots);
odeplot(sol, [x, (3*D1*a+4*D2)*P(x)/((1-q*S(x))*D2)], .5 .. (1/2)*Pi, tickmarks = [[seq((1/10)*i*Pi = (180*i*(1/10))*`°`, i = 1 .. 8)], default]);
my plot work very well. but i need to plot this ODE with five different parameter (q for for instance, q=0.1 & q=0.2 ....) all in one axis. something like this:

Hello,

I try make 2 calculation with one commant. So there should be two seperate answers in the last line. Who can help me? So the last line should be 2.387 and 0.

restart;
restart;
st := time():
ifactor(49! + 1);
(1021) (3119969417) (7374967) (139935066631148413819385559764102\

  5027693) (18503)
time() -st;
                             2.387
restart;
st := time():
isprime(49! + 1);
                             false
time() -st;
                               0.

I have some problems about plotting in Maple.

Question1. I have tried to plot this function for different intervals, but there is no resulting graph.

plot(1+18*(sinh(9*x-9)-sinh(3*x-477))^2/(9*cosh(9*x-9)+cosh(3*x-477))^2,x=-4..4);

What do you think why this happens?

Question2. plot(1+18*(sinh(9*x-9/2)-sinh(3*x-477/2))^2/(9*cosh(9*x-9/2)+cosh(3*x-477/2))^2,x=-1..1);

The graph of this function is a wierd one. Is there any problem?

 

Hello, 

I am trying to get W(x,y,y')=y*y'/x

I am trying 

omega:=(x, y(x), (diff(y(x),x)))-> (y(x)*(diff(y(x), x))/x);

but get 

Error, invalid parameter; functional operators require their parameters to be of type symbol or (symbol::type)

 

Can anyone help me out?

 

thank you

In this code, plot() and Norm() fail when used over a piecewise() function:

Error, invalid input: VectorCalculus:-Norm expects its 1st argument, v, to be of type {Matrix, Vector}, but received piecewise(t < 0, Vector[row](2, {(1) = -1, (2) = 0}, attributes = [coords = cartesian]), Vector[row](2, {(1) = 1, (2) = 0}, attributes = [coords = cartesian]))

Note that the same Norm() and piecewise() work fine when used without the plot() function:

Norm(vec(1));
                               1

Code works fine when piecewise() is removed, leaving a plot() / Norm() combination, for example:

So only the simultaneous combination plot() / Norm() / piecewise() fails. 

Finally, the question is:

Is there a way to plot Norm() / piecewise() combinations without workarounds like intermediate PLOT structures?

Thank you

plot(sin(x),x=-10..10)hello

I have an ODE plot like this and I want its horizontal axes to be in degree instead of radian, but I don't know how

 

NULLIn TEXT MODE the greek letters phi and varphi behave peculiarly in text entries inside text box in drawing. If it is the first letter it prints alright. Otherwise they rverse themselves (phi to varphi and viceversa). Is this solvable?

 

NULL

 

Download A_DOUBT_on_phi_varphi.mw


 


 

 

Ramakrishnan V

rukmini_ramki@hotmail.com

 

``

 

I would appreciate if anyone lets me know how to write circular references  (say 1 inside a circle to refer element 1. At present i do a drawing insert text and using.

 

Also i do not know how to remove the boundary of the overall drawing.

NULL

 

Download A_DOUBT_to_be_sent_to_prime_community.mw

Ramakrishnan V

rukmini_ramki@hotmail.com

m1 := <Old_Asso_eigenvector[2][1][1],Old_Asso_eigenvector[2][1][2],Old_Asso_eigenvector[2][1][3]>;
m2 := <Old_Asso_eigenvector[2][2][1],Old_Asso_eigenvector[2][2][2],Old_Asso_eigenvector[2][2][3]>;
m3 := <Old_Asso_eigenvector[2][3][1],Old_Asso_eigenvector[2][3][2],Old_Asso_eigenvector[2][3][3]>;

m1 := <Old_Asso_eigenvector[2][1][1],Old_Asso_eigenvector[2][2][1],Old_Asso_eigenvector[2][3][1]>;
m2 := <Old_Asso_eigenvector[2][1][2],Old_Asso_eigenvector[2][2][2],Old_Asso_eigenvector[2][3][2]>;
m3 := <Old_Asso_eigenvector[2][1][3],Old_Asso_eigenvector[2][2][3],Old_Asso_eigenvector[2][3][3]>;
ord := GramSchmidt([m1, m2, m3]);
ord := Basis([m1, m2, m3]);

ord[1].ord[2];  # expect = 1
ord[1].ord[3];  # expect = 1
ord[2].ord[1];  # expect = 1
ord[2].ord[3];  # expect = 1
ord[3].ord[1];  # expect = 1
ord[3].ord[2];  # expect = 1

is there a function get orthonormal basis ?

Why i cant get a final answer?

phi := -(1/2)*x^2+2*cos((3.14*(1/20))*x)*(c__1*cosh((3.14*(1/20))*y)+c__2*sinh((3.14*(1/20))*y)+c__3*y*cosh((3.14*(1/20))*y)+c__4*y*sinh((3.14*(1/20))*y));

-(1/2)*x^2+2*cos(.1570000000*x)*(c__1*cosh(.1570000000*y)+c__2*sinh(.1570000000*y)+c__3*y*cosh(.1570000000*y)+c__4*y*sinh(.1570000000*y))

(1)

diff(phi, x, x);``

 

-1-0.4929800000e-1*cos(.1570000000*x)*(c__1*cosh(.1570000000*y)+c__2*sinh(.1570000000*y)+c__3*y*cosh(.1570000000*y)+c__4*y*sinh(.1570000000*y))

(2)

-1-0.4929800000e-1*cos(.1570000000*x)*(c__1*cosh(.1570000000*y)+c__2*sinh(.1570000000*y)+c__3*y*cosh(.1570000000*y)+c__4*y*sinh(.1570000000*y)) = piecewise(-5 < x and x < 5, -1, -10 < x and x < -5, 5 < x and x < 10, 0)

-1-0.4929800000e-1*cos(.1570000000*x)*(`#msub(mi("c"),mi("1"))`*cosh(.1570000000*y)+`#msub(mi("c"),mi("2"))`*sinh(.1570000000*y)+`#msub(mi("c"),mi("3"))`*y*cosh(.1570000000*y)+`#msub(mi("c"),mi("4"))`*y*sinh(.1570000000*y)) = piecewise(-5 < x and x < 5, -1, -10 < x and x < -5, 5 < x and x < 10, 0)

(3)

eval(-1-0.4929800000e-1*cos(.1570000000*x)*(c__1*cosh(.1570000000*y)+c__2*sinh(.1570000000*y)+c__3*y*cosh(.1570000000*y)+c__4*y*sinh(.1570000000*y)) = piecewise(-5 < x and x < 5, -1, -10 < x and x < -5, 5 < x and x < 10, 0), y = .75);

-1-0.4929800000e-1*cos(.1570000000*x)*(1.006940545*`#msub(mi("c"),mi("1"))`+.1180222905*`#msub(mi("c"),mi("2"))`+.7552054088*`#msub(mi("c"),mi("3"))`+0.8851671788e-1*`#msub(mi("c"),mi("4"))`) = piecewise(-5 < x and x < 5, -1, -10 < x and x < -5, 5 < x and x < 10, 0)

(4)

eval(-1-0.4929800000e-1*cos(.1570000000*x)*(c__1*cosh(.1570000000*y)+c__2*sinh(.1570000000*y)+c__3*y*cosh(.1570000000*y)+c__4*y*sinh(.1570000000*y)) = piecewise(-5 < x and x < 5, -1, -10 < x and x < -5, 5 < x and x < 10, 0), y = -.75);

-1-0.4929800000e-1*cos(.1570000000*x)*(1.006940545*`#msub(mi("c"),mi("1"))`-.1180222905*`#msub(mi("c"),mi("2"))`-.7552054088*`#msub(mi("c"),mi("3"))`+0.8851671788e-1*`#msub(mi("c"),mi("4"))`) = piecewise(-5 < x and x < 5, -1, -10 < x and x < -5, 5 < x and x < 10, 0)

(5)

NULL

diff(-phi, x, y);

.3140000000*sin(.1570000000*x)*(.1570000000*c__1*sinh(.1570000000*y)+.1570000000*c__2*cosh(.1570000000*y)+c__3*cosh(.1570000000*y)+.1570000000*c__3*y*sinh(.1570000000*y)+c__4*sinh(.1570000000*y)+.1570000000*c__4*y*cosh(.1570000000*y))

(6)

eval(.3140000000*sin(.1570000000*x)*(.1570000000*c__1*sinh(.1570000000*y)+.1570000000*c__2*cosh(.1570000000*y)+c__3*cosh(.1570000000*y)+.1570000000*c__3*y*sinh(.1570000000*y)+c__4*sinh(.1570000000*y)+.1570000000*c__4*y*cosh(.1570000000*y)), y = -.75);

.3140000000*sin(.1570000000*x)*(-0.1852949961e-1*c__1+.1580896656*c__2+1.020837670*c__3-.2365895397*c__4)

(7)

.3140000000*sin(.1570000000*x)*(-0.1852949961e-1*c__1+.1580896656*c__2+1.020837670*c__3-.2365895397*c__4) = 0;

.3140000000*sin(.1570000000*x)*(-0.1852949961e-1*c__1+.1580896656*c__2+1.020837670*c__3-.2365895397*c__4) = 0

(8)

eval(.3140000000*sin(.1570000000*x)*(.1570000000*c__1*sinh(.1570000000*y)+.1570000000*c__2*cosh(.1570000000*y)+c__3*cosh(.1570000000*y)+.1570000000*c__3*y*sinh(.1570000000*y)+c__4*sinh(.1570000000*y)+.1570000000*c__4*y*cosh(.1570000000*y)), y = .75);

.3140000000*sin(.1570000000*x)*(0.1852949961e-1*c__1+.1580896656*c__2+1.020837670*c__3+.2365895397*c__4)

(9)

.3140000000*sin(.1570000000*x)*(0.1852949961e-1*c__1+.1580896656*c__2+1.020837670*c__3+.2365895397*c__4) = 0;

.3140000000*sin(.1570000000*x)*(0.1852949961e-1*c__1+.1580896656*c__2+1.020837670*c__3+.2365895397*c__4) = 0

(10)

s := solve({.3140000000*sin(.1570000000*x)*(-0.1852949961e-1*c__1+.1580896656*c__2+1.020837670*c__3-.2365895397*c__4) = 0, .3140000000*sin(.1570000000*x)*(0.1852949961e-1*c__1+.1580896656*c__2+1.020837670*c__3+.2365895397*c__4) = 0, -1-0.4929800000e-1*cos(.1570000000*x)*(1.006940545*c__1-.1180222905*c__2-.7552054088*c__3+0.8851671788e-1*c__4) = piecewise(-5 < x and x < 5, -1, -10 < x and x < -5, 5 < x and x < 10, 0), -1-0.4929800000e-1*cos(.1570000000*x)*(1.006940545*c__1+.1180222905*c__2+.7552054088*c__3+0.8851671788e-1*c__4) = piecewise(-5 < x and x < 5, -1, -10 < x and x < -5, 5 < x and x < 10, 0)}, {c__1, c__2, c__3, c__4});

{`#msub(mi("c"),mi("1"))` = -(20.28463654*(piecewise(-5. < x and x < 5., -1., -10. < x and x < -5., 5. < x and x < 10., 0.)+1.))/cos(.1570000000*x), `#msub(mi("c"),mi("2"))` = 0., `#msub(mi("c"),mi("3"))` = 0., `#msub(mi("c"),mi("4"))` = (1.588676174*(piecewise(-5. < x and x < 5., -1., -10. < x and x < -5., 5. < x and x < 10., 0.)+1.))/cos(.1570000000*x)}

(11)

phi1 := subs({c__1 = -20.28463654*(piecewise(-5. < x and x < 5., -1., -10. < x and x < -5., 5. < x and x < 10., 0.)+1.)/cos(.1570000000*x), c__2 = 0., c__3 = 0., c__4 = 1.588676174*(piecewise(-5. < x and x < 5., -1., -10. < x and x < -5., 5. < x and x < 10., 0.)+1.)/cos(.1570000000*x)}, phi);

-(1/2)*x^2+2*cos(.1570000000*x)*(-(20.28463654*(piecewise(-5. < x and x < 5., -1., -10. < x and x < -5., 5. < x and x < 10., 0.)+1.))*cosh(.1570000000*y)/cos(.1570000000*x)+(1.588676174*(piecewise(-5. < x and x < 5., -1., -10. < x and x < -5., 5. < x and x < 10., 0.)+1.))*y*sinh(.1570000000*y)/cos(.1570000000*x))

(12)

syy1 := diff(phi1, x, x);

-1-0.4929800000e-1*cos(.1570000000*x)*(-(20.28463654*(piecewise(-5. < x and x < 5., -1., -10. < x and x < -5., 5. < x and x < 10., 0.)+1.))*cosh(.1570000000*y)/cos(.1570000000*x)+(1.588676174*(piecewise(-5. < x and x < 5., -1., -10. < x and x < -5., 5. < x and x < 10., 0.)+1.))*y*sinh(.1570000000*y)/cos(.1570000000*x))-.6280000000*sin(.1570000000*x)*(-20.28463654*(diff(piecewise(-5. < x and x < 5., -1., -10. < x and x < -5., 5. < x and x < 10., 0.), x))*cosh(.1570000000*y)/cos(.1570000000*x)-(3.184687937*(piecewise(-5. < x and x < 5., -1., -10. < x and x < -5., 5. < x and x < 10., 0.)+1.))*cosh(.1570000000*y)*sin(.1570000000*x)/cos(.1570000000*x)^2+1.588676174*(diff(piecewise(-5. < x and x < 5., -1., -10. < x and x < -5., 5. < x and x < 10., 0.), x))*y*sinh(.1570000000*y)/cos(.1570000000*x)+(.2494221593*(piecewise(-5. < x and x < 5., -1., -10. < x and x < -5., 5. < x and x < 10., 0.)+1.))*y*sinh(.1570000000*y)*sin(.1570000000*x)/cos(.1570000000*x)^2)+2*cos(.1570000000*x)*(-20.28463654*(diff(piecewise(-5. < x and x < 5., -1., -10. < x and x < -5., 5. < x and x < 10., 0.), x, x))*cosh(.1570000000*y)/cos(.1570000000*x)-6.369375874*(diff(piecewise(-5. < x and x < 5., -1., -10. < x and x < -5., 5. < x and x < 10., 0.), x))*cosh(.1570000000*y)*sin(.1570000000*x)/cos(.1570000000*x)^2-(.9999920122*(piecewise(-5. < x and x < 5., -1., -10. < x and x < -5., 5. < x and x < 10., 0.)+1.))*cosh(.1570000000*y)*sin(.1570000000*x)^2/cos(.1570000000*x)^3-(.4999960061*(piecewise(-5. < x and x < 5., -1., -10. < x and x < -5., 5. < x and x < 10., 0.)+1.))*cosh(.1570000000*y)/cos(.1570000000*x)+1.588676174*(diff(piecewise(-5. < x and x < 5., -1., -10. < x and x < -5., 5. < x and x < 10., 0.), x, x))*y*sinh(.1570000000*y)/cos(.1570000000*x)+.4988443186*(diff(piecewise(-5. < x and x < 5., -1., -10. < x and x < -5., 5. < x and x < 10., 0.), x))*y*sinh(.1570000000*y)*sin(.1570000000*x)/cos(.1570000000*x)^2+(0.7831855802e-1*(piecewise(-5. < x and x < 5., -1., -10. < x and x < -5., 5. < x and x < 10., 0.)+1.))*y*sinh(.1570000000*y)*sin(.1570000000*x)^2/cos(.1570000000*x)^3+(0.3915927901e-1*(piecewise(-5. < x and x < 5., -1., -10. < x and x < -5., 5. < x and x < 10., 0.)+1.))*y*sinh(.1570000000*y)/cos(.1570000000*x))

(13)

"(->)"

-1.-2.*10^(-9)*(eval(diff(piecewise(-5. < x and x < 5., -1., -10. < x and x < -5., 5. < x and x < 10., 0.), x), x = 1))-40.56959712*(eval(diff(piecewise(-5. < x and x < 5., -1., -10. < x and x < -5., 5. < x and x < 10., 0.), x, x), x = 1))

(14)

``

 

Download case5analytic.mw

Hello,

I would like to know how to order a sequence of number from smallest to largest. This is if I have both real and imaginary numbers. Any help would be rgeatly appreciated! Thank you in advance.

Kind regards,

Gamiba Man

I'm solving a problem described in this topic.

It's sufficient for me to obtain N variable via this manual procedure: file4.mw

However when I want to quantify an expression (f) for any N (e.g. N=40), Maple shows a value with some I variable:

screen

What does it mean?

I'm trying to calculate flux through a cone but gets the following:

Flux(VectorField(`<,>`(x, y, z), cartesian[x, y, z]), Surface(`<,>`(x,y,z), x^2+y^2<=2*a,z = 2*a-sqrt(x^2+y^2)))
Error, (in VectorCalculus:-Flux) error with surface input

First 1197 1198 1199 1200 1201 1202 1203 Last Page 1199 of 2428