MaplePrimes Questions

Hello All,

 

I am doing research for my master's thesis and I am trying to type a PDE into maple and have been struggling for about 2 weeks now. I am new to Maple but have had a lot of Matlab experience. I've seen a couple of ways to do variable changes and things but I'm still.

 

These are the substitutions I'm trying to do.

into this equation, but and some of these terms are 0 (x*d/dt are 0, P, and M_e, and q_ye).

 So it is basically a Euler-Bernoulli beam with a free vibration.

I tried to use dchange to do the substitutions but I am having trouble defining ...

 or doing both

 

 

 I see why there is an error but I don't know how to fix it.

 

I've also tried

Which is close but still doesn't look quite right. because d/dt(omega*t/2) -> omega/2

 

Any thoughts?

 

Thanks in advance

Dear all,

I am using Maple to perform numerical integrations. When the final index in the loop is set to 5, the computation is fast and the results are quickly delivered. When I set a number higher than that, even 6, the program gets really slow and often crashes.

I herewith attach the script I use to generate the results. I guess that there should be a problem of memory management and I tried to use gc() as suggested in some forms but without success. I would appreciate it if someone here could explain the reason behind the problem.

Thank you,
question.mw

restart; Ts := 1.; sigma := 1.; C := 1.; B := 2./(1+C); with(inttrans); beta := B*Ts*omega; assume(Tb > 0); assume(u >= 0); FzzS := -(3/2)*u^3*((2*u+I*beta)*(exp(2*sigma*u)+sigma^2*exp(2*u))-4*sigma*u*((1+sigma)*u-1))/((2*u+I*beta)^2*exp((2*(1+sigma))*u)-4*u^2*((1+sigma)*u-1)^2); InvFzzS := simplify(invfourier(FzzS, omega, t)); logTimeMin := -2; logTimeMax := -1; NumSteps := 6; logTimeStep := evalf(1.0*(logTimeMax-logTimeMin)/NumSteps); curdirectory(); A := matrix(NumSteps, 2); T1 := Array(1 .. NumSteps); AF := Array(1 .. NumSteps); for i to NumSteps do logTime := evalf(i*logTimeStep+logTimeMin); curTime := evalf(10^logTime); A[i, 1] := curTime; A[i, 2] := evalf(Int(eval(InvFzzS, t = curTime), u = 0 .. infinity, epsilon = 10^(-5))); T1[i] := A[i, 1]; AF[i] := A[i, 2] end do

 

 

``

 

Download question.mw

hi,

here a comlicated formula,how i simplify

thanks  a lot.

``

f := (kappa*omega^2+omega^3)*(Y+(-sqrt(N)*omega^(3/2)*sin(theta[2])*cos(varphi[2])*lambda__b+sqrt(N)*omega^(3/2)*sin(theta[1])*cos(varphi[1])*lambda__a)/(2*(kappa*omega^2+omega^3)))^2/(2*omega)+(-kappa*omega^2+omega^3)*(X+(sqrt(N)*omega^(3/2)*sin(theta[2])*cos(varphi[2])*lambda__b+sqrt(N)*omega^(3/2)*sin(theta[1])*cos(varphi[1])*lambda__a)/(2*(-kappa*omega^2+omega^3)))^2/(2*omega)+(Omega*N*cos(theta[2])*omega+Omega*N*cos(theta[1])*omega-P__X^2*kappa+P__X^2*omega+P__Y^2*kappa+P__Y^2*omega)/(2*omega)-(sqrt(N)*omega^(3/2)*sin(theta[2])*cos(varphi[2])*lambda__b+sqrt(N)*omega^(3/2)*sin(theta[1])*cos(varphi[1])*lambda__a)^2/(8*omega*(-kappa*omega^2+omega^3))-(-sqrt(N)*omega^(3/2)*sin(theta[2])*cos(varphi[2])*lambda__b+sqrt(N)*omega^(3/2)*sin(theta[1])*cos(varphi[1])*lambda__a)^2/(8*omega*(kappa*omega^2+omega^3))

(1/2)*(kappa*omega^2+omega^3)*(Y+(-N^(1/2)*omega^(3/2)*sin(theta[2])*cos(varphi[2])*lambda__b+N^(1/2)*omega^(3/2)*sin(theta[1])*cos(varphi[1])*lambda__a)/(2*kappa*omega^2+2*omega^3))^2/omega+(1/2)*(-kappa*omega^2+omega^3)*(X+(N^(1/2)*omega^(3/2)*sin(theta[2])*cos(varphi[2])*lambda__b+N^(1/2)*omega^(3/2)*sin(theta[1])*cos(varphi[1])*lambda__a)/(-2*kappa*omega^2+2*omega^3))^2/omega+(1/2)*(Omega*N*cos(theta[2])*omega+Omega*N*cos(theta[1])*omega-P__X^2*kappa+P__X^2*omega+P__Y^2*kappa+P__Y^2*omega)/omega-(1/8)*(N^(1/2)*omega^(3/2)*sin(theta[2])*cos(varphi[2])*lambda__b+N^(1/2)*omega^(3/2)*sin(theta[1])*cos(varphi[1])*lambda__a)^2/(omega*(-kappa*omega^2+omega^3))-(1/8)*(-N^(1/2)*omega^(3/2)*sin(theta[2])*cos(varphi[2])*lambda__b+N^(1/2)*omega^(3/2)*sin(theta[1])*cos(varphi[1])*lambda__a)^2/(omega*(kappa*omega^2+omega^3))

(1)

``

(1/2)*(kappa*omega^2+omega^3)*(Y+(-N^(1/2)*omega^(3/2)*sin(theta[2])*cos(varphi[2])*lambda__b+N^(1/2)*omega^(3/2)*sin(theta[1])*cos(varphi[1])*lambda__a)/(2*kappa*omega^2+2*omega^3))^2/omega

(2)

``

    f is a complicated function,i want to make it more simplify,but i want to keep square style,

 let coefficients of X and Y keep one unit,and simplify terms  containd special symbol of omega

 

Download Q1119.mw

it what i wanted.

How using Maple one can obtain commutator and adjoint table for given set of infinitesimal generators spanning Lie symmetries for PDE?

 

 

The plot command outputs a graph of symbols where the line is made up of "H"s, vertical lines on the axes are "+"s, horizontal lines on the axes are "-"s, and intercepts are "*"s.

 

How do I fix this problem so that the graph displays a graph normally?

Hello,

I need to be able to find the difference between the ith+1 and the ith element of a sequence and store that difference in another list. My code so far doesn't seem to be able to do that. My code is below. Thank you in advance to anyone taking their time looking at this, any help is greatly appreciated!



Worksheet_Assignment_4_Ex_2_(v).mw

 

Kind regards,

Gambia Man

Hello I am trying to plot this differential equation,  have not had any success can any one help me.


plot(q(t)= Ce^-1/2 + sin2t +cos4t)

not sure what i am doing wrong and i just used the plot command

Thanks

Hi everyone. Please excuse me in advance, as I am new on this website and to Maple.

So I am using Maple 16 and I want it to give me the derivative of a function that has constants in it, for example f(x)=(x-a)(x-b). I wrote the (probably stupid) commands on Maple:

> f(x):=(x-a)(x-b);

> diff(f(x), x);

but the result is not the expected (2x-a-b), but rather (D(x))(x-b)-(D(a))(x-b). What would be the right things to write to get what I need?

 

Thank you in advance,

David

Hello,

I'm trying to improve the fvisual aspect of a worksheet.

For some inputs or texts, I would like to reuse some formats.

Is a way to duplicate formatting such as for software like word or others ?

In others words, is there in Maple this kind of option   Duplicate formatting ?

Thanks a lot for your help.

 

Hello everyone,

I'm working on a simulation for standing wave to prove that the combination of 2 waves in opposite direction can create standing wave. So I use these:

> restart;
> with(plots):
> W1:=A*cos(omega*t-k*x);

> W2:=A*cos(omega*t+k*x);

> W:=W1+W2;

> SW:=(A,omega,k)->animate(plot,[{W1,W2,W},x=-4..4,y=-4..4,color=[red,green,blue],scaling=constrained],t=0..5,frames=10);

> display(SW(2,2*Pi,5),insequence);

It did work if SW is a function with one variable, now I need 3 variables (A,omega,k);

It said: "Plotting error, empty plot"

Please show me my mistake or an another method. Thank you

phi := sin((1/4)*Pi*x)*(c__1*cosh((1/4)*Pi*y)+c__2*sinh((1/4)*pi*y)+c__3*y*cosh((1/4)*Pi*y)+c__4*y*sinh((1/4)*Pi*y))

sin((1/4)*Pi*x)*(c__1*cosh((1/4)*Pi*y)+c__2*sinh((1/4)*pi*y)+c__3*y*cosh((1/4)*Pi*y)+c__4*y*sinh((1/4)*Pi*y))

(1)

phi

sin((1/4)*Pi*x)*(c__1*cosh((1/4)*Pi*y)+c__2*sinh((1/4)*pi*y)+c__3*y*cosh((1/4)*Pi*y)+c__4*y*sinh((1/4)*Pi*y))

(2)

diff((2), y);

sin((1/4)*Pi*x)*((1/4)*c__1*sinh((1/4)*Pi*y)*Pi+(1/4)*c__2*cosh((1/4)*pi*y)*pi+c__3*cosh((1/4)*Pi*y)+(1/4)*c__3*y*sinh((1/4)*Pi*y)*Pi+c__4*sinh((1/4)*Pi*y)+(1/4)*c__4*y*cosh((1/4)*Pi*y)*Pi)

(3)

diff((3), y);

sin((1/4)*Pi*x)*((1/16)*c__1*cosh((1/4)*Pi*y)*Pi^2+(1/16)*c__2*sinh((1/4)*pi*y)*pi^2+(1/2)*c__3*sinh((1/4)*Pi*y)*Pi+(1/16)*c__3*y*cosh((1/4)*Pi*y)*Pi^2+(1/2)*c__4*cosh((1/4)*Pi*y)*Pi+(1/16)*c__4*y*sinh((1/4)*Pi*y)*Pi^2)

(4)

phi

sin((1/4)*Pi*x)*(c__1*cosh((1/4)*Pi*y)+c__2*sinh((1/4)*pi*y)+c__3*y*cosh((1/4)*Pi*y)+c__4*y*sinh((1/4)*Pi*y))

(5)

diff((5), x);

(1/4)*cos((1/4)*Pi*x)*Pi*(c__1*cosh((1/4)*Pi*y)+c__2*sinh((1/4)*pi*y)+c__3*y*cosh((1/4)*Pi*y)+c__4*y*sinh((1/4)*Pi*y))

(6)

diff((6), x);

-(1/16)*sin((1/4)*Pi*x)*Pi^2*(c__1*cosh((1/4)*Pi*y)+c__2*sinh((1/4)*pi*y)+c__3*y*cosh((1/4)*Pi*y)+c__4*y*sinh((1/4)*Pi*y))

(7)

phi

sin((1/4)*Pi*x)*(c__1*cosh((1/4)*Pi*y)+c__2*sinh((1/4)*pi*y)+c__3*y*cosh((1/4)*Pi*y)+c__4*y*sinh((1/4)*Pi*y))

(8)

diff((8), x);

(1/4)*cos((1/4)*Pi*x)*Pi*(c__1*cosh((1/4)*Pi*y)+c__2*sinh((1/4)*pi*y)+c__3*y*cosh((1/4)*Pi*y)+c__4*y*sinh((1/4)*Pi*y))

(9)

diff((9), y);

(1/4)*cos((1/4)*Pi*x)*Pi*((1/4)*c__1*sinh((1/4)*Pi*y)*Pi+(1/4)*c__2*cosh((1/4)*pi*y)*pi+c__3*cosh((1/4)*Pi*y)+(1/4)*c__3*y*sinh((1/4)*Pi*y)*Pi+c__4*sinh((1/4)*Pi*y)+(1/4)*c__4*y*cosh((1/4)*Pi*y)*Pi)

(10)

``

(11)

(4);

sin((1/4)*Pi*x)*((1/16)*c__1*cosh((1/4)*Pi*y)*Pi^2+(1/16)*c__2*sinh((1/4)*pi*y)*pi^2+(1/2)*c__3*sinh((1/4)*Pi*y)*Pi+(1/16)*c__3*y*cosh((1/4)*Pi*y)*Pi^2+(1/2)*c__4*cosh((1/4)*Pi*y)*Pi+(1/16)*c__4*y*sinh((1/4)*Pi*y)*Pi^2)

(12)

eval( (12), [x = 0]);

0

(13)

sin((1/4)*Pi*x)*((1/16)*c__1*cosh((1/4)*Pi*y)*Pi^2+(1/16)*c__2*sinh((1/4)*pi*y)*pi^2+(1/2)*c__3*sinh((1/4)*Pi*y)*Pi+(1/16)*c__3*y*cosh((1/4)*Pi*y)*Pi^2+(1/2)*c__4*cosh((1/4)*Pi*y)*Pi+(1/16)*c__4*y*sinh((1/4)*Pi*y)*Pi^2)

sin((1/4)*Pi*x)*((1/16)*c__1*cosh((1/4)*Pi*y)*Pi^2+(1/16)*c__2*sinh((1/4)*pi*y)*pi^2+(1/2)*c__3*sinh((1/4)*Pi*y)*Pi+(1/16)*c__3*y*cosh((1/4)*Pi*y)*Pi^2+(1/2)*c__4*cosh((1/4)*Pi*y)*Pi+(1/16)*c__4*y*sinh((1/4)*Pi*y)*Pi^2)

(14)

eval( (14), [x = 20]);

0

(15)

-(1/16)*sin((1/4)*Pi*x)*Pi^2*(c__1*cosh((1/4)*Pi*y)+c__2*sinh((1/4)*pi*y)+c__3*y*cosh((1/4)*Pi*y)+c__4*y*sinh((1/4)*Pi*y)) = 0;

-(1/16)*sin((1/4)*Pi*x)*Pi^2*(c__1*cosh((1/4)*Pi*y)+c__2*sinh((1/4)*pi*y)+c__3*y*cosh((1/4)*Pi*y)+c__4*y*sinh((1/4)*Pi*y)) = 0

(16)

eval( (16), [y = 9]);

-(1/16)*sin((1/4)*Pi*x)*Pi^2*(c__1*cosh((9/4)*Pi)+c__2*sinh((9/4)*pi)+9*c__3*cosh((9/4)*Pi)+9*c__4*sinh((9/4)*Pi)) = 0

(17)

evalf[5]( (17) );

-.61686*sin(.78540*x)*(587.25*c__1+c__2*sinh(2.2500*pi)+5285.2*c__3+5285.2*c__4) = 0.

(18)

-(1/16)*sin((1/4)*Pi*x)*Pi^2*(c__1*cosh((1/4)*Pi*y)+c__2*sinh((1/4)*pi*y)+c__3*y*cosh((1/4)*Pi*y)+c__4*y*sinh((1/4)*Pi*y)) = -sin((1/4)*pi*x);

-(1/16)*sin((1/4)*Pi*x)*Pi^2*(c__1*cosh((1/4)*Pi*y)+c__2*sinh((1/4)*pi*y)+c__3*y*cosh((1/4)*Pi*y)+c__4*y*sinh((1/4)*Pi*y)) = -sin((1/4)*pi*x)

(19)

eval( (19), [y = -9]);

-(1/16)*sin((1/4)*Pi*x)*Pi^2*(c__1*cosh((9/4)*Pi)-c__2*sinh((9/4)*pi)-9*c__3*cosh((9/4)*Pi)+9*c__4*sinh((9/4)*Pi)) = -sin((1/4)*pi*x)

(20)

evalf[5]( (20) );

-.61686*sin(.78540*x)*(587.25*c__1-1.*c__2*sinh(2.2500*pi)-5285.2*c__3+5285.2*c__4) = -1.*sin(.25000*pi*x)

(21)

-(1/4)*cos((1/4)*Pi*x)*Pi*((1/4)*c__1*sinh((1/4)*Pi*y)*Pi+(1/4)*c__2*cosh((1/4)*pi*y)*pi+c__3*cosh((1/4)*Pi*y)+(1/4)*c__3*y*sinh((1/4)*Pi*y)*Pi+c__4*sinh((1/4)*Pi*y)+(1/4)*c__4*y*cosh((1/4)*Pi*y)*Pi) = 0;

-(1/4)*cos((1/4)*Pi*x)*Pi*((1/4)*c__1*sinh((1/4)*Pi*y)*Pi+(1/4)*c__2*cosh((1/4)*pi*y)*pi+c__3*cosh((1/4)*Pi*y)+(1/4)*c__3*y*sinh((1/4)*Pi*y)*Pi+c__4*sinh((1/4)*Pi*y)+(1/4)*c__4*y*cosh((1/4)*Pi*y)*Pi) = 0

(22)

eval( (22), [y = 9]);

-(1/4)*cos((1/4)*Pi*x)*Pi*((1/4)*c__1*sinh((9/4)*Pi)*Pi+(1/4)*c__2*cosh((9/4)*pi)*pi+c__3*cosh((9/4)*Pi)+(9/4)*c__3*sinh((9/4)*Pi)*Pi+c__4*sinh((9/4)*Pi)+(9/4)*c__4*cosh((9/4)*Pi)*Pi) = 0

(23)

evalf[5]( (23) );

-.78540*cos(.78540*x)*(461.22*c__1+.25000*c__2*cosh(2.2500*pi)*pi+4738.2*c__3+4738.2*c__4) = 0.

(24)

-(1/4)*cos((1/4)*Pi*x)*Pi*((1/4)*c__1*sinh((1/4)*Pi*y)*Pi+(1/4)*c__2*cosh((1/4)*pi*y)*pi+c__3*cosh((1/4)*Pi*y)+(1/4)*c__3*y*sinh((1/4)*Pi*y)*Pi+c__4*sinh((1/4)*Pi*y)+(1/4)*c__4*y*cosh((1/4)*Pi*y)*Pi) = 0;

-(1/4)*cos((1/4)*Pi*x)*Pi*((1/4)*c__1*sinh((1/4)*Pi*y)*Pi+(1/4)*c__2*cosh((1/4)*pi*y)*pi+c__3*cosh((1/4)*Pi*y)+(1/4)*c__3*y*sinh((1/4)*Pi*y)*Pi+c__4*sinh((1/4)*Pi*y)+(1/4)*c__4*y*cosh((1/4)*Pi*y)*Pi) = 0

(25)

eval( (25), [y = -9]);

-(1/4)*cos((1/4)*Pi*x)*Pi*(-(1/4)*c__1*sinh((9/4)*Pi)*Pi+(1/4)*c__2*cosh((9/4)*pi)*pi+c__3*cosh((9/4)*Pi)+(9/4)*c__3*sinh((9/4)*Pi)*Pi-c__4*sinh((9/4)*Pi)-(9/4)*c__4*cosh((9/4)*Pi)*Pi) = 0

(26)

evalf[5]( (26) );

-.78540*cos(.78540*x)*(-461.22*c__1+.25000*c__2*cosh(2.2500*pi)*pi+4738.2*c__3-4738.2*c__4) = 0.

(27)

s:=solve({(18),(21),(24),(27)},{c__1,c__2,c__3,c__4});

{c__1 = 0.1113637578e-1*sin(.2500000000*pi*x)/sin(.7854000000*x), c__2 = 38405.79710*sin(.2500000000*pi*x)/(sin(.7854000000*x)*(13213.*cosh(2.250000000*pi)*pi-47382.*sinh(2.250000000*pi))), c__3 = -2.026391726*sin(.2500000000*pi*x)*cosh(2.250000000*pi)*pi/(sin(.7854000000*x)*(13213.*cosh(2.250000000*pi)*pi-47382.*sinh(2.250000000*pi))), c__4 = -0.1084023308e-2*sin(.2500000000*pi*x)/sin(.7854000000*x)}

(28)

phi1 := subs({c__1 = 0.1113637578e-1*sin(.2500000000*pi*x)/sin(.7854000000*x), c__2 = 38405.79710*sin(.2500000000*pi*x)/(sin(.7854000000*x)*(13213.*cosh(2.250000000*pi)*pi-47382.*sinh(2.250000000*pi))), c__3 = -2.026391726*sin(.2500000000*pi*x)*cosh(2.250000000*pi)*pi/(sin(.7854000000*x)*(13213.*cosh(2.250000000*pi)*pi-47382.*sinh(2.250000000*pi))), c__4 = -0.1084023308e-2*sin(.2500000000*pi*x)/sin(.7854000000*x)}, sin((1/4)*Pi*x)*(c__1*cosh((1/4)*Pi*y)+c__2*sinh((1/4)*pi*y)+c__3*y*cosh((1/4)*Pi*y)+c__4*y*sinh((1/4)*Pi*y)))

sin((1/4)*Pi*x)*(0.1113637578e-1*sin(.2500000000*pi*x)*cosh((1/4)*Pi*y)/sin(.7854000000*x)+38405.79710*sin(.2500000000*pi*x)*sinh((1/4)*pi*y)/(sin(.7854000000*x)*(13213.*cosh(2.250000000*pi)*pi-47382.*sinh(2.250000000*pi)))-2.026391726*sin(.2500000000*pi*x)*cosh(2.250000000*pi)*pi*y*cosh((1/4)*Pi*y)/(sin(.7854000000*x)*(13213.*cosh(2.250000000*pi)*pi-47382.*sinh(2.250000000*pi)))-0.1084023308e-2*sin(.2500000000*pi*x)*y*sinh((1/4)*Pi*y)/sin(.7854000000*x))

(29)

syy := diff(phi1, x, x);

-(1/16)*sin((1/4)*Pi*x)*Pi^2*(0.1113637578e-1*sin(.2500000000*pi*x)*cosh((1/4)*Pi*y)/sin(.7854000000*x)+38405.79710*sin(.2500000000*pi*x)*sinh((1/4)*pi*y)/(sin(.7854000000*x)*(13213.*cosh(2.250000000*pi)*pi-47382.*sinh(2.250000000*pi)))-2.026391726*sin(.2500000000*pi*x)*cosh(2.250000000*pi)*pi*y*cosh((1/4)*Pi*y)/(sin(.7854000000*x)*(13213.*cosh(2.250000000*pi)*pi-47382.*sinh(2.250000000*pi)))-0.1084023308e-2*sin(.2500000000*pi*x)*y*sinh((1/4)*Pi*y)/sin(.7854000000*x))+(1/2)*cos((1/4)*Pi*x)*Pi*(0.2784093945e-2*cos(.2500000000*pi*x)*pi*cosh((1/4)*Pi*y)/sin(.7854000000*x)-0.8746509538e-2*sin(.2500000000*pi*x)*cosh((1/4)*Pi*y)*cos(.7854000000*x)/sin(.7854000000*x)^2-30163.91304*sin(.2500000000*pi*x)*sinh((1/4)*pi*y)*cos(.7854000000*x)/(sin(.7854000000*x)^2*(13213.*cosh(2.250000000*pi)*pi-47382.*sinh(2.250000000*pi)))+9601.449275*cos(.2500000000*pi*x)*pi*sinh((1/4)*pi*y)/(sin(.7854000000*x)*(13213.*cosh(2.250000000*pi)*pi-47382.*sinh(2.250000000*pi)))-.5065979315*cos(.2500000000*pi*x)*pi^2*cosh(2.250000000*pi)*y*cosh((1/4)*Pi*y)/(sin(.7854000000*x)*(13213.*cosh(2.250000000*pi)*pi-47382.*sinh(2.250000000*pi)))+1.591528062*sin(.2500000000*pi*x)*cosh(2.250000000*pi)*pi*y*cosh((1/4)*Pi*y)*cos(.7854000000*x)/(sin(.7854000000*x)^2*(13213.*cosh(2.250000000*pi)*pi-47382.*sinh(2.250000000*pi)))-0.2710058270e-3*cos(.2500000000*pi*x)*pi*y*sinh((1/4)*Pi*y)/sin(.7854000000*x)+0.8513919061e-3*sin(.2500000000*pi*x)*y*sinh((1/4)*Pi*y)*cos(.7854000000*x)/sin(.7854000000*x)^2)+sin((1/4)*Pi*x)*(-0.6960234862e-3*sin(.2500000000*pi*x)*pi^2*cosh((1/4)*Pi*y)/sin(.7854000000*x)-0.4373254768e-2*cos(.2500000000*pi*x)*pi*cosh((1/4)*Pi*y)*cos(.7854000000*x)/sin(.7854000000*x)^2+0.1373901718e-1*sin(.2500000000*pi*x)*cosh((1/4)*Pi*y)*cos(.7854000000*x)^2/sin(.7854000000*x)^3+0.6869508591e-2*sin(.2500000000*pi*x)*cosh((1/4)*Pi*y)/sin(.7854000000*x)+47381.47460*sin(.2500000000*pi*x)*sinh((1/4)*pi*y)*cos(.7854000000*x)^2/(sin(.7854000000*x)^3*(13213.*cosh(2.250000000*pi)*pi-47382.*sinh(2.250000000*pi)))-15081.95652*cos(.2500000000*pi*x)*pi*sinh((1/4)*pi*y)*cos(.7854000000*x)/(sin(.7854000000*x)^2*(13213.*cosh(2.250000000*pi)*pi-47382.*sinh(2.250000000*pi)))+23690.73730*sin(.2500000000*pi*x)*sinh((1/4)*pi*y)/(sin(.7854000000*x)*(13213.*cosh(2.250000000*pi)*pi-47382.*sinh(2.250000000*pi)))-2400.362319*sin(.2500000000*pi*x)*pi^2*sinh((1/4)*pi*y)/(sin(.7854000000*x)*(13213.*cosh(2.250000000*pi)*pi-47382.*sinh(2.250000000*pi)))+.1266494829*sin(.2500000000*pi*x)*pi^3*cosh(2.250000000*pi)*y*cosh((1/4)*Pi*y)/(sin(.7854000000*x)*(13213.*cosh(2.250000000*pi)*pi-47382.*sinh(2.250000000*pi)))+.7957640309*cos(.2500000000*pi*x)*pi^2*cosh(2.250000000*pi)*y*cosh((1/4)*Pi*y)*cos(.7854000000*x)/(sin(.7854000000*x)^2*(13213.*cosh(2.250000000*pi)*pi-47382.*sinh(2.250000000*pi)))-2.499972280*sin(.2500000000*pi*x)*cosh(2.250000000*pi)*pi*y*cosh((1/4)*Pi*y)*cos(.7854000000*x)^2/(sin(.7854000000*x)^3*(13213.*cosh(2.250000000*pi)*pi-47382.*sinh(2.250000000*pi)))-1.249986140*sin(.2500000000*pi*x)*cosh(2.250000000*pi)*pi*y*cosh((1/4)*Pi*y)/(sin(.7854000000*x)*(13213.*cosh(2.250000000*pi)*pi-47382.*sinh(2.250000000*pi)))+0.6775145675e-4*sin(.2500000000*pi*x)*pi^2*y*sinh((1/4)*Pi*y)/sin(.7854000000*x)+0.4256959530e-3*cos(.2500000000*pi*x)*pi*y*sinh((1/4)*Pi*y)*cos(.7854000000*x)/sin(.7854000000*x)^2-0.1337366406e-2*sin(.2500000000*pi*x)*y*sinh((1/4)*Pi*y)*cos(.7854000000*x)^2/sin(.7854000000*x)^3-0.6686832031e-3*sin(.2500000000*pi*x)*y*sinh((1/4)*Pi*y)/sin(.7854000000*x))

(30)

evalf[5]( (30) );

-.61686*sin(.78540*x)*(0.11136e-1*sin(.25000*pi*x)*cosh(.78540*y)/sin(.78540*x)+38406.*sin(.25000*pi*x)*sinh(.25000*pi*y)/(sin(.78540*x)*(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi)))-2.0264*sin(.25000*pi*x)*cosh(2.2500*pi)*pi*y*cosh(.78540*y)/(sin(.78540*x)*(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi)))-0.10840e-2*sin(.25000*pi*x)*y*sinh(.78540*y)/sin(.78540*x))+1.5708*cos(.78540*x)*(0.27841e-2*cos(.25000*pi*x)*pi*cosh(.78540*y)/sin(.78540*x)-0.87465e-2*sin(.25000*pi*x)*cosh(.78540*y)*cos(.78540*x)/sin(.78540*x)^2-30164.*sin(.25000*pi*x)*sinh(.25000*pi*y)*cos(.78540*x)/(sin(.78540*x)^2*(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi)))+9601.4*cos(.25000*pi*x)*pi*sinh(.25000*pi*y)/(sin(.78540*x)*(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi)))-.50660*cos(.25000*pi*x)*pi^2*cosh(2.2500*pi)*y*cosh(.78540*y)/(sin(.78540*x)*(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi)))+1.5915*sin(.25000*pi*x)*cosh(2.2500*pi)*pi*y*cosh(.78540*y)*cos(.78540*x)/(sin(.78540*x)^2*(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi)))-0.27101e-3*cos(.25000*pi*x)*pi*y*sinh(.78540*y)/sin(.78540*x)+0.85139e-3*sin(.25000*pi*x)*y*sinh(.78540*y)*cos(.78540*x)/sin(.78540*x)^2)+sin(.78540*x)*(-0.69602e-3*sin(.25000*pi*x)*pi^2*cosh(.78540*y)/sin(.78540*x)-0.43733e-2*cos(.25000*pi*x)*pi*cosh(.78540*y)*cos(.78540*x)/sin(.78540*x)^2+0.13739e-1*sin(.25000*pi*x)*cosh(.78540*y)*cos(.78540*x)^2/sin(.78540*x)^3+0.68695e-2*sin(.25000*pi*x)*cosh(.78540*y)/sin(.78540*x)+47381.*sin(.25000*pi*x)*sinh(.25000*pi*y)*cos(.78540*x)^2/(sin(.78540*x)^3*(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi)))-15082.*cos(.25000*pi*x)*pi*sinh(.25000*pi*y)*cos(.78540*x)/(sin(.78540*x)^2*(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi)))+23691.*sin(.25000*pi*x)*sinh(.25000*pi*y)/(sin(.78540*x)*(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi)))-2400.4*sin(.25000*pi*x)*pi^2*sinh(.25000*pi*y)/(sin(.78540*x)*(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi)))+.12665*sin(.25000*pi*x)*pi^3*cosh(2.2500*pi)*y*cosh(.78540*y)/(sin(.78540*x)*(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi)))+.79576*cos(.25000*pi*x)*pi^2*cosh(2.2500*pi)*y*cosh(.78540*y)*cos(.78540*x)/(sin(.78540*x)^2*(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi)))-2.5000*sin(.25000*pi*x)*cosh(2.2500*pi)*pi*y*cosh(.78540*y)*cos(.78540*x)^2/(sin(.78540*x)^3*(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi)))-1.2500*sin(.25000*pi*x)*cosh(2.2500*pi)*pi*y*cosh(.78540*y)/(sin(.78540*x)*(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi)))+0.67751e-4*sin(.25000*pi*x)*pi^2*y*sinh(.78540*y)/sin(.78540*x)+0.42570e-3*cos(.25000*pi*x)*pi*y*sinh(.78540*y)*cos(.78540*x)/sin(.78540*x)^2-0.13374e-2*sin(.25000*pi*x)*y*sinh(.78540*y)*cos(.78540*x)^2/sin(.78540*x)^3-0.66868e-3*sin(.25000*pi*x)*y*sinh(.78540*y)/sin(.78540*x))

(31)

eval( (31), [y = -9]);

-.61686*sin(.78540*x)*(.810415675*sin(.25000*pi*x)/sin(.78540*x)-38406.*sin(.25000*pi*x)*sinh(2.25000*pi)/(sin(.78540*x)*(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi)))+10710.06188*sin(.25000*pi*x)*cosh(2.2500*pi)*pi/(sin(.78540*x)*(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi))))+1.5708*cos(.78540*x)*(.202609792*cos(.25000*pi*x)*pi/sin(.78540*x)-.636581512*sin(.25000*pi*x)*cos(.78540*x)/sin(.78540*x)^2+30164.*sin(.25000*pi*x)*sinh(2.25000*pi)*cos(.78540*x)/(sin(.78540*x)^2*(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi)))-9601.4*cos(.25000*pi*x)*pi*sinh(2.25000*pi)/(sin(.78540*x)*(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi)))+2677.515471*cos(.25000*pi*x)*pi^2*cosh(2.2500*pi)/(sin(.78540*x)*(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi)))-8411.499945*sin(.25000*pi*x)*cosh(2.2500*pi)*pi*cos(.78540*x)/(sin(.78540*x)^2*(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi))))+sin(.78540*x)*(-0.506574395e-1*sin(.25000*pi*x)*pi^2/sin(.78540*x)-.318293693*cos(.25000*pi*x)*pi*cos(.78540*x)/sin(.78540*x)^2+.999747570*sin(.25000*pi*x)*cos(.78540*x)^2/sin(.78540*x)^3+.499979490*sin(.25000*pi*x)/sin(.78540*x)-47381.*sin(.25000*pi*x)*sinh(2.25000*pi)*cos(.78540*x)^2/(sin(.78540*x)^3*(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi)))+15082.*cos(.25000*pi*x)*pi*sinh(2.25000*pi)*cos(.78540*x)/(sin(.78540*x)^2*(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi)))-23691.*sin(.25000*pi*x)*sinh(2.25000*pi)/(sin(.78540*x)*(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi)))+2400.4*sin(.25000*pi*x)*pi^2*sinh(2.25000*pi)/(sin(.78540*x)*(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi)))-669.3788677*sin(.25000*pi*x)*pi^3*cosh(2.2500*pi)/(sin(.78540*x)*(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi)))-4205.802825*cos(.25000*pi*x)*pi^2*cosh(2.2500*pi)*cos(.78540*x)/(sin(.78540*x)^2*(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi)))+13213.16360*sin(.25000*pi*x)*cosh(2.2500*pi)*pi*cos(.78540*x)^2/(sin(.78540*x)^3*(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi)))+6606.581798*sin(.25000*pi*x)*cosh(2.2500*pi)*pi/(sin(.78540*x)*(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi))))

(32)

eval( (32), [x = 6]);

0.6647677858e-4*sin(1.50000*pi)+.1251557536*sin(1.50000*pi)*sinh(2.25000*pi)/(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi))-0.2697360445e-1*sin(1.50000*pi)*cosh(2.2500*pi)*pi/(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi))+0.377220e-9*cos(1.50000*pi)*pi-0.13321e-5*cos(1.50000*pi)*pi*sinh(2.25000*pi)/(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi))-0.42401e-6*cos(1.50000*pi)*pi^2*cosh(2.2500*pi)/(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi))-0.5065743949e-1*sin(1.50000*pi)*pi^2+2400.400000*sin(1.50000*pi)*pi^2*sinh(2.25000*pi)/(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi))-669.3788676*sin(1.50000*pi)*pi^3*cosh(2.2500*pi)/(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi))

(33)

eval( (32), [x = 4]);

-0.360700e7*sin(1.00000*pi)+0.113252e11*sin(1.00000*pi)*sinh(2.25000*pi)/(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi))+0.70315e10*sin(1.00000*pi)*cosh(2.2500*pi)*pi/(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi))-4.65965*cos(1.00000*pi)*pi+16453.*cos(1.00000*pi)*pi*sinh(2.25000*pi)/(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi))+5237.5*cos(1.00000*pi)*pi^2*cosh(2.2500*pi)/(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi))-0.5065743950e-1*sin(1.00000*pi)*pi^2+2400.400000*sin(1.00000*pi)*pi^2*sinh(2.25000*pi)/(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi))-669.3788677*sin(1.00000*pi)*pi^3*cosh(2.2500*pi)/(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi))

(34)

eval( (32), [x = 20]);

-144280.5*sin(5.00000*pi)+0.45300e9*sin(5.00000*pi)*sinh(2.25000*pi)/(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi))+0.281258e9*sin(5.00000*pi)*cosh(2.2500*pi)*pi/(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi))-.931934*cos(5.00000*pi)*pi+3291.2*cos(5.00000*pi)*pi*sinh(2.25000*pi)/(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi))+1047.5*cos(5.00000*pi)*pi^2*cosh(2.2500*pi)/(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi))-0.5065743950e-1*sin(5.00000*pi)*pi^2+2400.400000*sin(5.00000*pi)*pi^2*sinh(2.25000*pi)/(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi))-669.3788674*sin(5.00000*pi)*pi^3*cosh(2.2500*pi)/(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi))

(35)

eval( (32), [x = 2]);

0.6647668651e-4*sin(.50000*pi)+.1251606393*sin(.50000*pi)*sinh(2.25000*pi)/(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi))-0.2697317827e-1*sin(.50000*pi)*cosh(2.2500*pi)*pi/(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi))+0.125740e-9*cos(.50000*pi)*pi-0.44401e-6*cos(.50000*pi)*pi*sinh(2.25000*pi)/(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi))-0.14133e-6*cos(.50000*pi)*pi^2*cosh(2.2500*pi)/(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi))-0.5065743950e-1*sin(.50000*pi)*pi^2+2400.400000*sin(.50000*pi)*pi^2*sinh(2.25000*pi)/(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi))-669.3788677*sin(.50000*pi)*pi^3*cosh(2.2500*pi)/(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi))

(36)

 

sxx := diff(phi1, y, y);

sin((1/4)*Pi*x)*(0.6960234862e-3*sin(.2500000000*pi*x)*cosh((1/4)*Pi*y)*Pi^2/sin(.7854000000*x)+2400.362319*sin(.2500000000*pi*x)*pi^2*sinh((1/4)*pi*y)/(sin(.7854000000*x)*(13213.*cosh(2.250000000*pi)*pi-47382.*sinh(2.250000000*pi)))-1.013195863*sin(.2500000000*pi*x)*cosh(2.250000000*pi)*pi*sinh((1/4)*Pi*y)*Pi/(sin(.7854000000*x)*(13213.*cosh(2.250000000*pi)*pi-47382.*sinh(2.250000000*pi)))-.1266494829*sin(.2500000000*pi*x)*cosh(2.250000000*pi)*pi*y*cosh((1/4)*Pi*y)*Pi^2/(sin(.7854000000*x)*(13213.*cosh(2.250000000*pi)*pi-47382.*sinh(2.250000000*pi)))-0.5420116540e-3*sin(.2500000000*pi*x)*cosh((1/4)*Pi*y)*Pi/sin(.7854000000*x)-0.6775145675e-4*sin(.2500000000*pi*x)*y*sinh((1/4)*Pi*y)*Pi^2/sin(.7854000000*x))

(37)

eval( (37), [x = 20]);

0

(38)

eval( (37), [x = 0]);

0

(39)

sxy := diff(-phi1, x, y);

-(1/4)*cos((1/4)*Pi*x)*Pi*(0.2784093945e-2*sin(.2500000000*pi*x)*sinh((1/4)*Pi*y)*Pi/sin(.7854000000*x)+9601.449275*sin(.2500000000*pi*x)*cosh((1/4)*pi*y)*pi/(sin(.7854000000*x)*(13213.*cosh(2.250000000*pi)*pi-47382.*sinh(2.250000000*pi)))-2.026391726*sin(.2500000000*pi*x)*cosh(2.250000000*pi)*pi*cosh((1/4)*Pi*y)/(sin(.7854000000*x)*(13213.*cosh(2.250000000*pi)*pi-47382.*sinh(2.250000000*pi)))-.5065979315*sin(.2500000000*pi*x)*cosh(2.250000000*pi)*pi*y*sinh((1/4)*Pi*y)*Pi/(sin(.7854000000*x)*(13213.*cosh(2.250000000*pi)*pi-47382.*sinh(2.250000000*pi)))-0.1084023308e-2*sin(.2500000000*pi*x)*sinh((1/4)*Pi*y)/sin(.7854000000*x)-0.2710058270e-3*sin(.2500000000*pi*x)*y*cosh((1/4)*Pi*y)*Pi/sin(.7854000000*x))-sin((1/4)*Pi*x)*(0.6960234862e-3*cos(.2500000000*pi*x)*pi*sinh((1/4)*Pi*y)*Pi/sin(.7854000000*x)-0.2186627384e-2*sin(.2500000000*pi*x)*sinh((1/4)*Pi*y)*Pi*cos(.7854000000*x)/sin(.7854000000*x)^2-7540.978260*sin(.2500000000*pi*x)*cosh((1/4)*pi*y)*pi*cos(.7854000000*x)/(sin(.7854000000*x)^2*(13213.*cosh(2.250000000*pi)*pi-47382.*sinh(2.250000000*pi)))+2400.362319*cos(.2500000000*pi*x)*pi^2*cosh((1/4)*pi*y)/(sin(.7854000000*x)*(13213.*cosh(2.250000000*pi)*pi-47382.*sinh(2.250000000*pi)))-.5065979315*cos(.2500000000*pi*x)*pi^2*cosh(2.250000000*pi)*cosh((1/4)*Pi*y)/(sin(.7854000000*x)*(13213.*cosh(2.250000000*pi)*pi-47382.*sinh(2.250000000*pi)))-.1266494829*cos(.2500000000*pi*x)*pi^2*cosh(2.250000000*pi)*y*sinh((1/4)*Pi*y)*Pi/(sin(.7854000000*x)*(13213.*cosh(2.250000000*pi)*pi-47382.*sinh(2.250000000*pi)))+1.591528062*sin(.2500000000*pi*x)*cosh(2.250000000*pi)*pi*cosh((1/4)*Pi*y)*cos(.7854000000*x)/(sin(.7854000000*x)^2*(13213.*cosh(2.250000000*pi)*pi-47382.*sinh(2.250000000*pi)))+.3978820155*sin(.2500000000*pi*x)*cosh(2.250000000*pi)*pi*y*sinh((1/4)*Pi*y)*Pi*cos(.7854000000*x)/(sin(.7854000000*x)^2*(13213.*cosh(2.250000000*pi)*pi-47382.*sinh(2.250000000*pi)))-0.2710058270e-3*cos(.2500000000*pi*x)*pi*sinh((1/4)*Pi*y)/sin(.7854000000*x)-0.6775145675e-4*cos(.2500000000*pi*x)*pi*y*cosh((1/4)*Pi*y)*Pi/sin(.7854000000*x)+0.8513919061e-3*sin(.2500000000*pi*x)*sinh((1/4)*Pi*y)*cos(.7854000000*x)/sin(.7854000000*x)^2+0.2128479765e-3*sin(.2500000000*pi*x)*y*cosh((1/4)*Pi*y)*Pi*cos(.7854000000*x)/sin(.7854000000*x)^2)

(40)

evalf[5]( (40) );

-.78540*cos(.78540*x)*(0.76625e-2*sin(.25000*pi*x)*sinh(.78540*y)/sin(.78540*x)+9601.4*sin(.25000*pi*x)*cosh(.25000*pi*y)*pi/(sin(.78540*x)*(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi)))-2.0264*sin(.25000*pi*x)*cosh(2.2500*pi)*pi*cosh(.78540*y)/(sin(.78540*x)*(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi)))-1.5915*sin(.25000*pi*x)*cosh(2.2500*pi)*pi*y*sinh(.78540*y)/(sin(.78540*x)*(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi)))-0.85141e-3*sin(.25000*pi*x)*y*cosh(.78540*y)/sin(.78540*x))-1.*sin(.78540*x)*(0.19156e-2*cos(.25000*pi*x)*pi*sinh(.78540*y)/sin(.78540*x)-0.60180e-2*sin(.25000*pi*x)*sinh(.78540*y)*cos(.78540*x)/sin(.78540*x)^2-7541.0*sin(.25000*pi*x)*cosh(.25000*pi*y)*pi*cos(.78540*x)/(sin(.78540*x)^2*(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi)))+2400.4*cos(.25000*pi*x)*pi^2*cosh(.25000*pi*y)/(sin(.78540*x)*(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi)))-.50660*cos(.25000*pi*x)*pi^2*cosh(2.2500*pi)*cosh(.78540*y)/(sin(.78540*x)*(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi)))-.39788*cos(.25000*pi*x)*pi^2*cosh(2.2500*pi)*y*sinh(.78540*y)/(sin(.78540*x)*(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi)))+1.5915*sin(.25000*pi*x)*cosh(2.2500*pi)*pi*cosh(.78540*y)*cos(.78540*x)/(sin(.78540*x)^2*(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi)))+1.2500*sin(.25000*pi*x)*cosh(2.2500*pi)*pi*y*sinh(.78540*y)*cos(.78540*x)/(sin(.78540*x)^2*(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi)))-0.21285e-3*cos(.25000*pi*x)*pi*y*cosh(.78540*y)/sin(.78540*x)+0.66869e-3*sin(.25000*pi*x)*y*cosh(.78540*y)*cos(.78540*x)/sin(.78540*x)^2)

(41)

eval( (41), [y = -9]);

-.78540*cos(.78540*x)*(0.118103e-3*sin(.25000*pi*x)/sin(.78540*x)+9601.4*sin(.25000*pi*x)*cosh(2.25000*pi)*pi/(sin(.78540*x)*(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi)))-9601.494623*sin(.25000*pi*x)*cosh(2.2500*pi)*pi/(sin(.78540*x)*(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi))))-1.*sin(.78540*x)*(0.30993e-4*cos(.25000*pi*x)*pi/sin(.78540*x)-0.128448e-3*sin(.25000*pi*x)*cos(.78540*x)/sin(.78540*x)^2-7541.0*sin(.25000*pi*x)*cosh(2.25000*pi)*pi*cos(.78540*x)/(sin(.78540*x)^2*(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi)))+2400.4*cos(.25000*pi*x)*pi^2*cosh(2.25000*pi)/(sin(.78540*x)*(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi)))-2400.400082*cos(.25000*pi*x)*pi^2*cosh(2.2500*pi)/(sin(.78540*x)*(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi)))+7541.183323*sin(.25000*pi*x)*cosh(2.2500*pi)*pi*cos(.78540*x)/(sin(.78540*x)^2*(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi))))

(42)

eval( (41), [y = 9]);

-.78540*cos(.78540*x)*(-0.118103e-3*sin(.25000*pi*x)/sin(.78540*x)+9601.4*sin(.25000*pi*x)*cosh(2.25000*pi)*pi/(sin(.78540*x)*(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi)))-9601.494623*sin(.25000*pi*x)*cosh(2.2500*pi)*pi/(sin(.78540*x)*(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi))))-1.*sin(.78540*x)*(-0.30993e-4*cos(.25000*pi*x)*pi/sin(.78540*x)+0.128448e-3*sin(.25000*pi*x)*cos(.78540*x)/sin(.78540*x)^2-7541.0*sin(.25000*pi*x)*cosh(2.25000*pi)*pi*cos(.78540*x)/(sin(.78540*x)^2*(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi)))+2400.4*cos(.25000*pi*x)*pi^2*cosh(2.25000*pi)/(sin(.78540*x)*(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi)))-2400.400082*cos(.25000*pi*x)*pi^2*cosh(2.2500*pi)/(sin(.78540*x)*(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi)))+7541.183323*sin(.25000*pi*x)*cosh(2.2500*pi)*pi*cos(.78540*x)/(sin(.78540*x)^2*(13213.*cosh(2.2500*pi)*pi-47382.*sinh(2.2500*pi))))

(43)

``

Download analytical_case_1.mw

Hi, I'm trying to create a procedure like this;

f:=proc(a);
if a in RealRange(0,1) then a else no;
end if;
end proc;

 But when I try with f(0.5); for instance, I get the error: 

Error, (in f) cannot determine if this expression is true or false: .5 in RealRange(0, 1)

What am I doing wrong here, why can Maple not determine this?

Thank you! 

HI,

 

wondered if anyone knows how to make proper use of the large operators pallete on the list of pallettes on the left. For example when using the contour integration symbol on the left how do you enter the delimiters. 

I always get the error: "Error, unable to match delimiters". The help on this is not useful for this case. 

 

Thanks. 

 

Hi everyone, I'm a new one to Maple. I've just learnt some basic tools :)

 

This is my task. I tried to record in Maple but I had errors. I don't know why I had problems but I hope you will help me and I will do it.

tkanks

First 1200 1201 1202 1203 1204 1205 1206 Last Page 1202 of 2428