MaplePrimes Questions

I want to extract all the symbols and last trade from 

http://finance.yahoo.com/q/cp?s=%5EIXIC

I have tried:

status, data, headers := HTTP:-Get("http://finance.yahoo.com/q/cp?s=%5EIXIC");
data;

but it just gives me a bunch of jiberish! Any ideas?

The equation tan(y) = 2*tan(x) defines y implicitly as a function of x.  Well, perphas "defines" is too strong a word, since there are multiple solutions for y.  However, if I am not mistaken, there exists a unique continuous solution y(x) that goes through the origin, that is, y(0)=0, and is defined for all x.

Question 1: How do we plot the graph of y(x)?

I have a roundabout solution as follows.  Differentiate the equation tan(y(x)) = 2*tan(x) with respect to x and arrive at a first order differential equation in y(x).  Solve the differential equation with the initial condition y(0)=0.  Surprisingly, Maple obtains an explicit solution:

which we can plot:

plot(rhs(%), x=0..2*Pi);

Question 2: Is there a neat way of getting that solution with algebra only, without appealing to differential equations?

 

please i would love make a 3d plot of this Bessel function expression against the parameter p and T[0] using maple (p^(((2+deltaT[0])/(2)))*(C[1]*BesselJ((delta)/(-2)*sqrt(T[0]-4 T[g]),(-((T[g])/(T^(2)[0])*gamma*G*delta*sqrt(alpha*k))/(p))+C[2]*BesselY((delta)/(-2)*sqrt(T[0]-4 T[g]),(-((T[g])/(T^(2)[0])*gamma*G*delta*sqrt(alpha*k))/(p)) where [delta = 0.2e-2, T[g] = (1.1, .615, .48, .2962), k = (1.2, 1.3, 1.4, 1.5), G = .2, gamma = .2, alpha = 5.36, C[1] = 500, C[2] = 100,p = (.22, .23, .24, .25), T[0] = (3.666667, 2.307692, 1.714286, 1.377778)

 

we can get the continued fraction of cot(x) with the command

> convert(cot(x), confrac, x, 6)

the result is

(1+x^2/(-3+x^2/(5-(1/7)*x^2)))/x

 convert(cot(x), confrac, x, 6)

how could I convert this result to a form like

1/x-(1/10)*x+49*x/(20*x^2-210)

 

 

I have some excel data which I need to fit in the formula:

0.5a*erfc(0.5*2^0.5*(-x+m1/s1)) + (0.5-0.5a)*erfc(0.5*2^0.5*(-x+m2/s2))

In this formula the coefficient m ans s are mean and standard deviation and a is the weigth of 2 peak in a cummulative gaussian distribution.

I fitted this (I will insert the maple file) and found:

-48736.43 erfc(-0.707x + 0.707) + 48736.43 erfc(0.707x + 0.707)

Can this be correct?

And how do I find the values of m1, s1, m2, s2 and a?

data.xlsx

data_fit.mw

I want to solve numerically the nonlinear pde:

 

u_x+u_t - (u_{xt})^2 = u(x,t)

 

which method do you propose me to use with maple? (I don't mine about which boundary conditions to be used here).

 

Hello.
Have a question for use Physics[TransformCoordinates] . For example, in a Cartesian coordinate system is an arbitrary tensor. As you know, in this case the covariant, contravariant and mixed components are the same. We have a coordinate transformation such as transforming our Cartesian coordinate system in the oblique coordinate system. In this simple example, correctly calculated the covariant, contravariant and mixed components (structure: covariant and contravariant), but other mixed components (structure: contravariant and covariant) are calculated is not correct. I checked by hand.



restart

with(Physics):

Setup(mathematicalnotation = true):

ds := dx[1]^2+dx[2]^2+dx[3]^2:

Setup(coordinates = (X = [x[1], x[2], x[3]]), dimension = 3, metric = ds, spacetimeindices = lowercaselatin, quiet):

g_[]:

A[a, b] = Matrix(3, 3, {(1, 1) = 2, (1, 2) = 1, (1, 3) = 3, (2, 1) = 2, (2, 2) = 3, (2, 3) = 4, (3, 1) = 1, (3, 2) = 2, (3, 3) = 1})

A[a, b] = (Matrix(3, 3, {(1, 1) = 2, (1, 2) = 1, (1, 3) = 3, (2, 1) = 2, (2, 2) = 3, (2, 3) = 4, (3, 1) = 1, (3, 2) = 2, (3, 3) = 1}))

(1)

Define(%):

`Defined objects with tensor properties`

(2)

A[]

A[a, b] = (Matrix(3, 3, {(1, 1) = 2, (1, 2) = 1, (1, 3) = 3, (2, 1) = 2, (2, 2) = 3, (2, 3) = 4, (3, 1) = 1, (3, 2) = 2, (3, 3) = 1}))

(3)

A[`~`]

A[`~a`, `~b`] = (Matrix(3, 3, {(1, 1) = 2, (1, 2) = 1, (1, 3) = 3, (2, 1) = 2, (2, 2) = 3, (2, 3) = 4, (3, 1) = 1, (3, 2) = 2, (3, 3) = 1}))

(4)

A[`~a`,b,matrix]

A[`~a`, b] = (Matrix(3, 3, {(1, 1) = 2, (1, 2) = 1, (1, 3) = 3, (2, 1) = 2, (2, 2) = 3, (2, 3) = 4, (3, 1) = 1, (3, 2) = 2, (3, 3) = 1}))

(5)

A[`a`,~b,matrix]

A[a, `~b`] = (Matrix(3, 3, {(1, 1) = 2, (1, 2) = 1, (1, 3) = 3, (2, 1) = 2, (2, 2) = 3, (2, 3) = 4, (3, 1) = 1, (3, 2) = 2, (3, 3) = 1}))

(6)

[y[1] = x[1]-x[2], y[2] = x[2]-x[3], y[3] = x[3]]

[y[1] = x[1]-x[2], y[2] = x[2]-x[3], y[3] = x[3]]

(7)

solve((7), {x[1], x[2], x[3]})

{x[1] = y[1]+y[2]+y[3], x[2] = y[2]+y[3], x[3] = y[3]}

(8)

OK

B[a,b] = TransformCoordinates((8), A[a, b], [y[1], y[2], y[3]], [x[1], x[2], x[3]], simplifier = `@`(`simplify/size`, simplify))

B[a, b] = (Matrix(3, 3, {(1, 1) = 2, (1, 2) = 3, (1, 3) = 6, (2, 1) = 4, (2, 2) = 8, (2, 3) = 15, (3, 1) = 5, (3, 2) = 11, (3, 3) = 19}))

(9)

OK

C[a,b] = TransformCoordinates((8), A[~a,~b], [y[1], y[2], y[3]], [x[1], x[2], x[3]], simplifier = `@`(`simplify/size`, simplify))

C[a, b] = (Matrix(3, 3, {(1, 1) = 2, (1, 2) = -1, (1, 3) = -1, (2, 1) = 0, (2, 2) = -2, (2, 3) = 3, (3, 1) = -1, (3, 2) = 1, (3, 3) = 1}))

(10)

OK

D[a,b] = TransformCoordinates((8), A[a,~b], [y[1], y[2], y[3]], [x[1], x[2], x[3]], simplifier = `@`(`simplify/size`, simplify))NULL

D[a, b] = Matrix(%id = 4452149890)

(11)

Bug

E[a, b] = TransformCoordinates((8), A[~a,b], [y[1], y[2], y[3]], [x[1], x[2], x[3]], simplifier = `@`(`simplify/size`, simplify))NULLNULL

E[a, b] = Matrix(%id = 4452139458)

(12)

should be

LinearAlgebra:-Transpose(rhs((12)))

Matrix(3, 3, {(1, 1) = 0, (1, 2) = -2, (1, 3) = -3, (2, 1) = 1, (2, 2) = 2, (2, 3) = 5, (3, 1) = 1, (3, 2) = 3, (3, 3) = 4})

(13)

``



Download Transformation_tensor_components.mw

I have a function fitted and found the coeffiecients, the coeffiecient values are found with data from maple

the function is: a*(x+b/c)

my result is 5x+15

How do I get the values of a, b and c? The value of a is 5 that I know, but how does I get that maple gives me all the values of a,b  and c? The problem is that I get one value while i need the values of a, b and c.

Thanks

I recently got myself a 64 bit computer and have noticed that I cannot use the option compile=true in dsolve/numeric. Take the following simple example:

dsolve({diff(x(t),t)=x(t),x(0)=1},numeric,compile=true);
Error, (in dsolve/numeric/SC/preproc) unable to compile (rc=1), please try again, and if that fails verify your Windows compiler installation

I'm using Windows 10, but had the same problem with Windows 8.1 on the same machine.
The Compiler:-Compile examples in the help page all work.

What do I have to do to make the option compile=true work in dsolve/numeric?

You may safely assume that I don't know any technicalities about these things.

hi, I am tyying to solve this equation but there is arising an error, plz help me,
VIM.3rd_order.mw

How to build a discrete probability distribution with the function with two variables below?

ff := (x,y)->piecewise(x = 0 and y = 0, 1/8, x = 0 and y = 1, 1/6, x = 1 and y = 0, 1/3, x = 1 and y = 1, 3/8);

Thank you for your help.

Oliveira.

ca:= [a, b, a, a, b, b, b, a, a, a, c, a, c, c, a, a];

I started using Maple for a short time and do not know all the functions and commands. How to split the above list as follows:

[[a], [b], [a, a], [b, b, b], [a, a, a], [c], [a], [c, c], [a, a]]

Thank you for help.

Oliveira.

How to change the font style, globally, the inputs and outputs of computations in Maple 2015? That is, every time a new document is started, the chosen style is automatically applied.

Oliveira.

This Question involves using dsolve(..., numeric) for an IVP specifed by a procedure. This is based on a Question asked earlier today. In this Question, I have no interest in how to solve this IVP or in why this solution technique fails. In the worksheet below, the odeplot command seems to get stuck in an infinite loop (I am not interested in why that happens), and I press the stop button (in the Standard GUI). Then, instead of the usual Warning, computation interupted message followed by a return to the command prompt, I get an informative message and the plot that has been computed so far. This seems like a very useful feature: to return the results computed so far after an interuption. Furthermore, those results are programmatically accessible. My Question is How is this done? How do you trap the stop button and return the results?


restart:


Sys:= proc(N,t,Y,YP)

local eqs,yp2,yp4;

     YP[1]:= Y[2];

     YP[3]:= Y[4];

     eqs:= [
          yp2*Y[3]+yp4*Y[2]*sin(Y[1]^2)+cos(yp4*Y[3]) = sin(t),
          Y[2]*yp4*sin(Y[1]*Y[3])+5*yp2*Y[4]*cos(Y[1]^2)+t^2*Y[1]*Y[3]^2 = exp(-Y[3]^2)
     ];

     YP[2],YP[4]:= op(subs(fsolve(eqs,{yp2=1,yp4=2}),[yp2,yp4]))

end proc:

res:= dsolve(
     numeric, procedure= Sys, initial= Array([1,1,2,2]),
     number= 4, procvars= [x1(t),diff(x1(t),t),x2(t),diff(x2(t),t)],
     start= 0, maxfun= 0
):

 

plots:-odeplot(res, [t,x1(t)], 0..0.27);
#After 10 seconds or so, (I did)/(you should) hit the stop button.

Warning, cannot evaluate the solution further right of .25109286, cannot downgrade delay storage for problems with delay derivative order > 1, try increasing delaypts

#Note that the command's result is still programmatically accessible:

P:= %;

PLOT(CURVES(Array(1..201, 1..2, {(1, 1) = .0, (1, 2) = 1.0, (2, 1) = 0.135e-2, (2, 2) = 1.001349729199153, (3, 1) = 0.27e-2, (3, 2) = 1.0026989169868508, (4, 1) = 0.405e-2, (4, 2) = 1.004047563645964, (5, 1) = 0.54e-2, (5, 2) = 1.005395669456049, (6, 1) = 0.675e-2, (6, 2) = 1.0067432346933451, (7, 1) = 0.81e-2, (7, 2) = 1.0080902596307788, (8, 1) = 0.945e-2, (8, 2) = 1.0094367445379593, (9, 1) = 0.108e-1, (9, 2) = 1.0107826896811836, (10, 1) = 0.1215e-1, (10, 2) = 1.01212809532343, (11, 1) = 0.135e-1, (11, 2) = 1.0134729617243639, (12, 1) = 0.1485e-1, (12, 2) = 1.0148172891403349, (13, 1) = 0.162e-1, (13, 2) = 1.0161610778243784, (14, 1) = 0.1755e-1, (14, 2) = 1.0175043280262126, (15, 1) = 0.189e-1, (15, 2) = 1.0188470399922427, (16, 1) = 0.2025e-1, (16, 2) = 1.020189213965557, (17, 1) = 0.216e-1, (17, 2) = 1.0215308501859302, (18, 1) = 0.2295e-1, (18, 2) = 1.0228719488898206, (19, 1) = 0.243e-1, (19, 2) = 1.0242125103103719, (20, 1) = 0.2565e-1, (20, 2) = 1.0255525346774133, (21, 1) = 0.27e-1, (21, 2) = 1.0268920222174571, (22, 1) = 0.2835e-1, (22, 2) = 1.0282309731537027, (23, 1) = 0.297e-1, (23, 2) = 1.0295693877060321, (24, 1) = 0.3105e-1, (24, 2) = 1.0309072660910137, (25, 1) = 0.324e-1, (25, 2) = 1.0322446085219004, (26, 1) = 0.3375e-1, (26, 2) = 1.0335814152086296, (27, 1) = 0.351e-1, (27, 2) = 1.0349176863578238, (28, 1) = 0.3645e-1, (28, 2) = 1.0362534221727904, (29, 1) = 0.378e-1, (29, 2) = 1.037588622853522, (30, 1) = 0.3915e-1, (30, 2) = 1.0389232885966946, (31, 1) = 0.405e-1, (31, 2) = 1.0402574195956709, (32, 1) = 0.4185e-1, (32, 2) = 1.041591016040497, (33, 1) = 0.432e-1, (33, 2) = 1.0429240781179057, (34, 1) = 0.4455e-1, (34, 2) = 1.044256606011312, (35, 1) = 0.459e-1, (35, 2) = 1.0455885999008183, (36, 1) = 0.4725e-1, (36, 2) = 1.04692005996321, (37, 1) = 0.486e-1, (37, 2) = 1.0482509863719582, (38, 1) = 0.4995e-1, (38, 2) = 1.0495813792972193, (39, 1) = 0.513e-1, (39, 2) = 1.0509112389058335, (40, 1) = 0.5265e-1, (40, 2) = 1.0522405653613263, (41, 1) = 0.54e-1, (41, 2) = 1.0535693587831985, (42, 1) = 0.5535e-1, (42, 2) = 1.0548976192244952, (43, 1) = 0.567e-1, (43, 2) = 1.0562253468268996, (44, 1) = 0.5805e-1, (44, 2) = 1.0575525417260814, (45, 1) = 0.594e-1, (45, 2) = 1.058879204046671, (46, 1) = 0.6075e-1, (46, 2) = 1.0602053339022601, (47, 1) = 0.621e-1, (47, 2) = 1.0615309313954047, (48, 1) = 0.6345e-1, (48, 2) = 1.0628559966176196, (49, 1) = 0.648e-1, (49, 2) = 1.0641805296493847, (50, 1) = 0.6615e-1, (50, 2) = 1.0655045305601394, (51, 1) = 0.675e-1, (51, 2) = 1.0668279994082868, (52, 1) = 0.6885e-1, (52, 2) = 1.06815093624119, (53, 1) = 0.702e-1, (53, 2) = 1.0694733410951756, (54, 1) = 0.7155e-1, (54, 2) = 1.0707952139955317, (55, 1) = 0.729e-1, (55, 2) = 1.0721165549565084, (56, 1) = 0.7425e-1, (56, 2) = 1.0734373639813168, (57, 1) = 0.756e-1, (57, 2) = 1.074757641062132, (58, 1) = 0.7695e-1, (58, 2) = 1.0760773861800887, (59, 1) = 0.783e-1, (59, 2) = 1.0773965993052852, (60, 1) = 0.7965e-1, (60, 2) = 1.078715280396781, (61, 1) = 0.81e-1, (61, 2) = 1.0800334294025973, (62, 1) = 0.8235e-1, (62, 2) = 1.081351046259718, (63, 1) = 0.837e-1, (63, 2) = 1.082668130894088, (64, 1) = 0.8505e-1, (64, 2) = 1.0839846832206155, (65, 1) = 0.864e-1, (65, 2) = 1.0853007031431687, (66, 1) = 0.8775e-1, (66, 2) = 1.08661619055458, (67, 1) = 0.891e-1, (67, 2) = 1.0879311453366416, (68, 1) = 0.9045e-1, (68, 2) = 1.0892455673601087, (69, 1) = 0.918e-1, (69, 2) = 1.0905594564846983, (70, 1) = 0.9315e-1, (70, 2) = 1.0918728125590897, (71, 1) = 0.945e-1, (71, 2) = 1.0931856354209235, (72, 1) = 0.9585e-1, (72, 2) = 1.0944979248968028, (73, 1) = 0.972e-1, (73, 2) = 1.0958096808022917, (74, 1) = 0.9855e-1, (74, 2) = 1.097120902941917, (75, 1) = 0.999e-1, (75, 2) = 1.098431591109168, (76, 1) = .10125, (76, 2) = 1.0997417450864941, (77, 1) = .1026, (77, 2) = 1.1010513646453082, (78, 1) = .10395, (78, 2) = 1.1023604495459853, (79, 1) = .1053, (79, 2) = 1.1036689995378606, (80, 1) = .10665, (80, 2) = 1.1049770143592332, (81, 1) = .108, (81, 2) = 1.1062844937176912, (82, 1) = .10935, (82, 2) = 1.1075914369810387, (83, 1) = .1107, (83, 2) = 1.108897843678326, (84, 1) = .11205, (84, 2) = 1.1102037134210607, (85, 1) = .1134, (85, 2) = 1.1115090457860155, (86, 1) = .11475, (86, 2) = 1.1128138403152263, (87, 1) = .1161, (87, 2) = 1.1141180965159976, (88, 1) = .11745, (88, 2) = 1.1154218138608973, (89, 1) = .1188, (89, 2) = 1.1167249917877577, (90, 1) = .12015, (90, 2) = 1.118027629699678, (91, 1) = .1215, (91, 2) = 1.1193297269650222, (92, 1) = .12285, (92, 2) = 1.1206312829174188, (93, 1) = .1242, (93, 2) = 1.1219322968557623, (94, 1) = .12555, (94, 2) = 1.123232768044212, (95, 1) = .1269, (95, 2) = 1.1245326957121933, (96, 1) = .12825, (96, 2) = 1.1258320790543948, (97, 1) = .1296, (97, 2) = 1.1271309172307735, (98, 1) = .13095, (98, 2) = 1.1284292093665487, (99, 1) = .1323, (99, 2) = 1.1297269545522062, (100, 1) = .13365, (100, 2) = 1.131024151843497, (101, 1) = .135, (101, 2) = 1.1323208002614376, (102, 1) = .13635, (102, 2) = 1.133616898792309, (103, 1) = .1377, (103, 2) = 1.1349124463876585, (104, 1) = .13905, (104, 2) = 1.1362074419642976, (105, 1) = .1404, (105, 2) = 1.137501884404303, (106, 1) = .14175, (106, 2) = 1.1387957725550182, (107, 1) = .1431, (107, 2) = 1.1400891052290492, (108, 1) = .14445, (108, 2) = 1.1413818812042709, (109, 1) = .1458, (109, 2) = 1.1426740992238196, (110, 1) = .14715, (110, 2) = 1.1439657579960996, (111, 1) = .1485, (111, 2) = 1.1452568561947796, (112, 1) = .14985, (112, 2) = 1.1465473922561644, (113, 1) = .1512, (113, 2) = 1.1478373642224777, (114, 1) = .15255, (114, 2) = 1.14912677047606, (115, 1) = .1539, (115, 2) = 1.1504156093257876, (116, 1) = .15525, (116, 2) = 1.1517038789853584, (117, 1) = .1566, (117, 2) = 1.1529915775732906, (118, 1) = .15795, (118, 2) = 1.1542787031129238, (119, 1) = .1593, (119, 2) = 1.1555652535324183, (120, 1) = .16065, (120, 2) = 1.1568512266647548, (121, 1) = .162, (121, 2) = 1.1581366202477354, (122, 1) = .16335, (122, 2) = 1.1594214319239837, (123, 1) = .1647, (123, 2) = 1.1607056592409424, (124, 1) = .16605, (124, 2) = 1.1619892996508772, (125, 1) = .1674, (125, 2) = 1.1632723505108726, (126, 1) = .16875, (126, 2) = 1.1645548090828357, (127, 1) = .1701, (127, 2) = 1.165836672533493, (128, 1) = .17145, (128, 2) = 1.1671179379343934, (129, 1) = .1728, (129, 2) = 1.1683986022619053, (130, 1) = .17415, (130, 2) = 1.169678662397219, (131, 1) = .1755, (131, 2) = 1.1709581151263448, (132, 1) = .17685, (132, 2) = 1.172236957140115, (133, 1) = .1782, (133, 2) = 1.1735151850341814, (134, 1) = .17955, (134, 2) = 1.174792795282732, (135, 1) = .1809, (135, 2) = 1.1760697835893776, (136, 1) = .18225, (136, 2) = 1.1773461457270373, (137, 1) = .1836, (137, 2) = 1.1786218774884782, (138, 1) = .18495, (138, 2) = 1.179896974422449, (139, 1) = .1863, (139, 2) = 1.181171431833682, (140, 1) = .18765, (140, 2) = 1.182445244782893, (141, 1) = .189, (141, 2) = 1.1837184080867809, (142, 1) = .19035, (142, 2) = 1.1849909163180268, (143, 1) = .1917, (143, 2) = 1.1862627638052967, (144, 1) = .19305, (144, 2) = 1.1875339446332376, (145, 1) = .1944, (145, 2) = 1.1888044526424812, (146, 1) = .19575, (146, 2) = 1.1900742814296414, (147, 1) = .1971, (147, 2) = 1.1913434243473158, (148, 1) = .19845, (148, 2) = 1.1926118745040841, (149, 1) = .1998, (149, 2) = 1.193879624764512, (150, 1) = .20115, (150, 2) = 1.195146667749144, (151, 1) = .2025, (151, 2) = 1.1964129956664247, (152, 1) = .20385, (152, 2) = 1.1976785994686407, (153, 1) = .2052, (153, 2) = 1.1989434702227826, (154, 1) = .20655, (154, 2) = 1.2002075985381981, (155, 1) = .2079, (155, 2) = 1.2014709744148189, (156, 1) = .20925, (156, 2) = 1.2027335872431564, (157, 1) = .2106, (157, 2) = 1.2039954258043046, (158, 1) = .21195, (158, 2) = 1.2052564782699382, (159, 1) = .2133, (159, 2) = 1.2065167322023145, (160, 1) = .21465, (160, 2) = 1.2077761745542712, (161, 1) = .216, (161, 2) = 1.2090347916692288, (162, 1) = .21735, (162, 2) = 1.2102925692811892, (163, 1) = .2187, (163, 2) = 1.2115494925044938, (164, 1) = .22005, (164, 2) = 1.2128055446540236, (165, 1) = .2214, (165, 2) = 1.2140607079057624, (166, 1) = .22275, (166, 2) = 1.2153149635677838, (167, 1) = .2241, (167, 2) = 1.216568291442756, (168, 1) = .22545, (168, 2) = 1.2178206698279472, (169, 1) = .2268, (169, 2) = 1.2190720755152231, (170, 1) = .22815, (170, 2) = 1.2203224837910482, (171, 1) = .2295, (171, 2) = 1.221571868436484, (172, 1) = .23085, (172, 2) = 1.22282020172719, (173, 1) = .2322, (173, 2) = 1.224067453329788, (174, 1) = .23355, (174, 2) = 1.225313589366023, (175, 1) = .2349, (175, 2) = 1.226558573530251, (176, 1) = .23625, (176, 2) = 1.227802365810496, (177, 1) = .2376, (177, 2) = 1.229044922475539, (178, 1) = .23895, (178, 2) = 1.2302861960749185, (179, 1) = .2403, (179, 2) = 1.2315261354389295, (180, 1) = .24165, (180, 2) = 1.2327646837576534, (181, 1) = .243, (181, 2) = 1.2340017760538164, (182, 1) = .24435, (182, 2) = 1.2352373405616506, (183, 1) = .2457, (183, 2) = 1.2364712973589982, (184, 1) = .24705, (184, 2) = 1.2377035562942194, (185, 1) = .2484, (185, 2) = 1.2389340149185948, (186, 1) = .24975, (186, 2) = 1.2401625575137232, (187, 1) = .2511, (187, 2) = undefined, (188, 1) = .25245, (188, 2) = undefined, (189, 1) = .2538, (189, 2) = undefined, (190, 1) = .25515, (190, 2) = undefined, (191, 1) = .2565, (191, 2) = undefined, (192, 1) = .25785, (192, 2) = undefined, (193, 1) = .2592, (193, 2) = undefined, (194, 1) = .26055, (194, 2) = undefined, (195, 1) = .2619, (195, 2) = undefined, (196, 1) = .26325, (196, 2) = undefined, (197, 1) = .2646, (197, 2) = undefined, (198, 1) = .26595, (198, 2) = undefined, (199, 1) = .2673, (199, 2) = undefined, (200, 1) = .26865, (200, 2) = undefined, (201, 1) = .27, (201, 2) = undefined}, datatype = float[8], order = C_order), COLOUR(RGB, .47058824, 0., 0.54901961e-1)), AXESLABELS(t, x1))

``


Download trap_stop_button.mw

I need to graph multiple values of a function. i.e. equal number data sets graphed on the same graph. Can you please help me?

First 1243 1244 1245 1246 1247 1248 1249 Last Page 1245 of 2429