MaplePrimes Questions

HI experts,

fibonacci_sequence_with_coefficient.pdf

Is there a Last name associated with a double 'hailstone problem' with variable integer coefficients?

Just curious.

Regards,

Matt

 

I am trying to solve system consisting of two equations and two unknowns. I tried solve but it gives back unevaluated then I tried fsolve which gives an error.
 

restart; x := 2.891022275*`ε`^4*sin(phi)^5*cos(phi)+1.080128320*`ε`^8*sin(phi)^11*cos(phi)+.1742483217*`ε`^10*sin(phi)^9*cos(phi)+3.293959886*`ε`^4*sin(phi)^15*cos(phi)+0.1414814731e-3*`ε`^12*sin(phi)*cos(phi)+0.1186386550e-1*`ε`^10*sin(phi)^3*cos(phi)+4.689119196*`ε`^2*sin(phi)^11*cos(phi)+.2775645236*`ε`^8*sin(phi)^5*cos(phi)+2.242139502*`ε`^6*sin(phi)^7*cos(phi)+6.170463035*`ε`^4*sin(phi)^9*cos(phi)+.2212715683*`ε`^2*sin(phi)*cos(phi)+.2565381358*`ε`^4*sin(phi)*cos(phi)+6.282275004*`ε`^4*sin(phi)^11*cos(phi)+0.9582543506e-5*`ε`^14*sin(phi)*cos(phi)+1.375810863*`ε`^2*sin(phi)^3*cos(phi)+0.4588193106e-1*`ε`^10*sin(phi)^5*cos(phi)+.6194422970*`ε`^8*sin(phi)^7*cos(phi)+0.1249753779e-2*`ε`^12*sin(phi)^3*cos(phi)+3.258184644*`ε`^6*sin(phi)^9*cos(phi)+3.520102051*`ε`^2*sin(phi)^13*cos(phi)+0.9608710101e-4*`ε`^14*sin(phi)^3*cos(phi)+5.222697446*`ε`^4*sin(phi)^13*cos(phi)+0.4740690151e-6*`ε`^16*sin(phi)*cos(phi)+.1124269022*`ε`^10*sin(phi)^7*cos(phi)+0.5349926002e-2*`ε`^12*sin(phi)^5*cos(phi)+.9885168554*`ε`^8*sin(phi)^9*cos(phi)+3.656113028*`ε`^6*sin(phi)^11*cos(phi)+2.252753163*`ε`^2*sin(phi)^15*cos(phi)+0.1562649478e-2*`ε`^10*sin(phi)*cos(phi)+0.8234222560e-1*`ε`^8*sin(phi)^3*cos(phi)+0.1277730241e-1*`ε`^12*sin(phi)^7*cos(phi)+1.148250169*`ε`^6*sin(phi)^5*cos(phi)+0.4933078791e-5*`ε`^16*sin(phi)^3*cos(phi)+4.857729947*`ε`^4*sin(phi)^7*cos(phi)+5.282506255*`ε`^2*sin(phi)^9*cos(phi)+0.1560418629e-7*`ε`^18*sin(phi)*cos(phi)-.6257226193*sin(phi)*cos(phi)+.6645139802*sin(phi)^11*cos(phi)+0.4077214292e-3*`ε`^14*sin(phi)^5*cos(phi)+.1265580305*sin(phi)^17*cos(phi)+.2494189998*sin(phi)^15*cos(phi)+.4337136311*sin(phi)^13*cos(phi)-.1331733921*sin(phi)^3*cos(phi)+.5467360220*sin(phi)^5*cos(phi)+.8861408610*sin(phi)^7*cos(phi)+4.820745909*`ε`^2*sin(phi)^7*cos(phi)+1.134364300*`ε`^2*sin(phi)^17*cos(phi)+0.7437311918e-1*`ε`^6*sin(phi)*cos(phi)+0.1283200926e-1*`ε`^8*sin(phi)*cos(phi)+1.168884099*`ε`^4*sin(phi)^3*cos(phi)+.3981616844*`ε`^6*sin(phi)^3*cos(phi)+3.270035435*`ε`^2*sin(phi)^5*cos(phi)+.8667852062*sin(phi)^9*cos(phi)+0.5208654259e-1*sin(phi)^19*cos(phi)+2.975771526*`ε`^6*sin(phi)^13*cos(phi); y := 2.891022275*`ε`^4*sin(phi)^5*cos(phi)+1.080128320*`ε`^8*sin(phi)^11*cos(phi)+.1742483217*`ε`^10*sin(phi)^9*cos(phi)+3.293959886*`ε`^4*sin(phi)^15*cos(phi)+0.1414814731e-3*`ε`^12*sin(phi)*cos(phi)+0.1186386550e-1*`ε`^10*sin(phi)^3*cos(phi)+4.689119196*`ε`^2*sin(phi)^11*cos(phi)+.2775645236*`ε`^8*sin(phi)^5*cos(phi)+2.242139502*`ε`^6*sin(phi)^7*cos(phi)+6.170463035*`ε`^4*sin(phi)^9*cos(phi)+.2212715683*`ε`^2*sin(phi)*cos(phi)+.2565381358*`ε`^4*sin(phi)*cos(phi)+6.282275004*`ε`^4*sin(phi)^11*cos(phi)+0.9582543506e-5*`ε`^14*sin(phi)*cos(phi)+1.375810863*`ε`^2*sin(phi)^3*cos(phi)+0.4588193106e-1*`ε`^10*sin(phi)^5*cos(phi)+.6194422970*`ε`^8*sin(phi)^7*cos(phi)+0.1249753779e-2*`ε`^12*sin(phi)^3*cos(phi)+3.258184644*`ε`^6*sin(phi)^9*cos(phi)+3.520102051*`ε`^2*sin(phi)^13*cos(phi)+0.9608710101e-4*`ε`^14*sin(phi)^3*cos(phi)+5.222697446*`ε`^4*sin(phi)^13*cos(phi)+0.4740690151e-6*`ε`^16*sin(phi)*cos(phi)+.1124269022*`ε`^10*sin(phi)^7*cos(phi)+0.5349926002e-2*`ε`^12*sin(phi)^5*cos(phi)+.9885168554*`ε`^8*sin(phi)^9*cos(phi)+3.656113028*`ε`^6*sin(phi)^11*cos(phi)+2.252753163*`ε`^2*sin(phi)^15*cos(phi)+0.1562649478e-2*`ε`^10*sin(phi)*cos(phi)+0.8234222560e-1*`ε`^8*sin(phi)^3*cos(phi)+0.1277730241e-1*`ε`^12*sin(phi)^7*cos(phi)+1.148250169*`ε`^6*sin(phi)^5*cos(phi)+0.4933078791e-5*`ε`^16*sin(phi)^3*cos(phi)+4.857729947*`ε`^4*sin(phi)^7*cos(phi)+5.282506255*`ε`^2*sin(phi)^9*cos(phi)+0.1560418629e-7*`ε`^18*sin(phi)*cos(phi)-.6257226193*sin(phi)*cos(phi)+.6645139802*sin(phi)^11*cos(phi)+0.4077214292e-3*`ε`^14*sin(phi)^5*cos(phi)+.1265580305*sin(phi)^17*cos(phi)+.2494189998*sin(phi)^15*cos(phi)+.4337136311*sin(phi)^13*cos(phi)-.1331733921*sin(phi)^3*cos(phi)+.5467360220*sin(phi)^5*cos(phi)+.8861408610*sin(phi)^7*cos(phi)+4.820745909*`ε`^2*sin(phi)^7*cos(phi)+1.134364300*`ε`^2*sin(phi)^17*cos(phi)+0.7437311918e-1*`ε`^6*sin(phi)*cos(phi)+0.1283200926e-1*`ε`^8*sin(phi)*cos(phi)+1.168884099*`ε`^4*sin(phi)^3*cos(phi)+.3981616844*`ε`^6*sin(phi)^3*cos(phi)+3.270035435*`ε`^2*sin(phi)^5*cos(phi)+.8667852062*sin(phi)^9*cos(phi)+0.5208654259e-1*sin(phi)^19*cos(phi)+2.975771526*`ε`^6*sin(phi)^13*cos(phi); evalf(solve({x = 0, y = 0}, {phi, `ε`})); fsolve({x = 0, y = 0}, {phi, `ε`})

.9885168554*`ε`^8*sin(phi)^9*cos(phi)+0.1249753779e-2*`ε`^12*sin(phi)^3*cos(phi)+3.258184644*`ε`^6*sin(phi)^9*cos(phi)+.1124269022*`ε`^10*sin(phi)^7*cos(phi)+0.4588193106e-1*`ε`^10*sin(phi)^5*cos(phi)+.2565381358*`ε`^4*sin(phi)*cos(phi)+6.282275004*`ε`^4*sin(phi)^11*cos(phi)+0.4933078791e-5*`ε`^16*sin(phi)^3*cos(phi)+5.282506255*`ε`^2*sin(phi)^9*cos(phi)+2.242139502*`ε`^6*sin(phi)^7*cos(phi)+6.170463035*`ε`^4*sin(phi)^9*cos(phi)+0.8234222560e-1*`ε`^8*sin(phi)^3*cos(phi)+0.9608710101e-4*`ε`^14*sin(phi)^3*cos(phi)+3.656113028*`ε`^6*sin(phi)^11*cos(phi)+5.222697446*`ε`^4*sin(phi)^13*cos(phi)+0.1562649478e-2*`ε`^10*sin(phi)*cos(phi)+.6194422970*`ε`^8*sin(phi)^7*cos(phi)+3.520102051*`ε`^2*sin(phi)^13*cos(phi)+0.1186386550e-1*`ε`^10*sin(phi)^3*cos(phi)+4.689119196*`ε`^2*sin(phi)^11*cos(phi)+1.375810863*`ε`^2*sin(phi)^3*cos(phi)+0.4740690151e-6*`ε`^16*sin(phi)*cos(phi)+0.4077214292e-3*`ε`^14*sin(phi)^5*cos(phi)+0.9582543506e-5*`ε`^14*sin(phi)*cos(phi)+0.5349926002e-2*`ε`^12*sin(phi)^5*cos(phi)+.1742483217*`ε`^10*sin(phi)^9*cos(phi)+1.148250169*`ε`^6*sin(phi)^5*cos(phi)+0.1277730241e-1*`ε`^12*sin(phi)^7*cos(phi)+0.7437311918e-1*`ε`^6*sin(phi)*cos(phi)+1.080128320*`ε`^8*sin(phi)^11*cos(phi)+2.975771526*`ε`^6*sin(phi)^13*cos(phi)+1.134364300*`ε`^2*sin(phi)^17*cos(phi)+3.293959886*`ε`^4*sin(phi)^15*cos(phi)+1.168884099*`ε`^4*sin(phi)^3*cos(phi)+3.270035435*`ε`^2*sin(phi)^5*cos(phi)+0.1283200926e-1*`ε`^8*sin(phi)*cos(phi)+4.820745909*`ε`^2*sin(phi)^7*cos(phi)+.3981616844*`ε`^6*sin(phi)^3*cos(phi)+2.891022275*`ε`^4*sin(phi)^5*cos(phi)+0.1414814731e-3*`ε`^12*sin(phi)*cos(phi)+.2212715683*`ε`^2*sin(phi)*cos(phi)+2.252753163*`ε`^2*sin(phi)^15*cos(phi)+4.857729947*`ε`^4*sin(phi)^7*cos(phi)+.2775645236*`ε`^8*sin(phi)^5*cos(phi)+0.1560418629e-7*`ε`^18*sin(phi)*cos(phi)-.6257226193*sin(phi)*cos(phi)+.8667852062*sin(phi)^9*cos(phi)+0.5208654259e-1*sin(phi)^19*cos(phi)+.1265580305*sin(phi)^17*cos(phi)+.2494189998*sin(phi)^15*cos(phi)+.4337136311*sin(phi)^13*cos(phi)-.1331733921*sin(phi)^3*cos(phi)+.5467360220*sin(phi)^5*cos(phi)+.8861408610*sin(phi)^7*cos(phi)+.6645139802*sin(phi)^11*cos(phi)

 

.9885168554*`ε`^8*sin(phi)^9*cos(phi)+0.1249753779e-2*`ε`^12*sin(phi)^3*cos(phi)+3.258184644*`ε`^6*sin(phi)^9*cos(phi)+.1124269022*`ε`^10*sin(phi)^7*cos(phi)+0.4588193106e-1*`ε`^10*sin(phi)^5*cos(phi)+.2565381358*`ε`^4*sin(phi)*cos(phi)+6.282275004*`ε`^4*sin(phi)^11*cos(phi)+0.4933078791e-5*`ε`^16*sin(phi)^3*cos(phi)+5.282506255*`ε`^2*sin(phi)^9*cos(phi)+2.242139502*`ε`^6*sin(phi)^7*cos(phi)+6.170463035*`ε`^4*sin(phi)^9*cos(phi)+0.8234222560e-1*`ε`^8*sin(phi)^3*cos(phi)+0.9608710101e-4*`ε`^14*sin(phi)^3*cos(phi)+3.656113028*`ε`^6*sin(phi)^11*cos(phi)+5.222697446*`ε`^4*sin(phi)^13*cos(phi)+0.1562649478e-2*`ε`^10*sin(phi)*cos(phi)+.6194422970*`ε`^8*sin(phi)^7*cos(phi)+3.520102051*`ε`^2*sin(phi)^13*cos(phi)+0.1186386550e-1*`ε`^10*sin(phi)^3*cos(phi)+4.689119196*`ε`^2*sin(phi)^11*cos(phi)+1.375810863*`ε`^2*sin(phi)^3*cos(phi)+0.4740690151e-6*`ε`^16*sin(phi)*cos(phi)+0.4077214292e-3*`ε`^14*sin(phi)^5*cos(phi)+0.9582543506e-5*`ε`^14*sin(phi)*cos(phi)+0.5349926002e-2*`ε`^12*sin(phi)^5*cos(phi)+.1742483217*`ε`^10*sin(phi)^9*cos(phi)+1.148250169*`ε`^6*sin(phi)^5*cos(phi)+0.1277730241e-1*`ε`^12*sin(phi)^7*cos(phi)+0.7437311918e-1*`ε`^6*sin(phi)*cos(phi)+1.080128320*`ε`^8*sin(phi)^11*cos(phi)+2.975771526*`ε`^6*sin(phi)^13*cos(phi)+1.134364300*`ε`^2*sin(phi)^17*cos(phi)+3.293959886*`ε`^4*sin(phi)^15*cos(phi)+1.168884099*`ε`^4*sin(phi)^3*cos(phi)+3.270035435*`ε`^2*sin(phi)^5*cos(phi)+0.1283200926e-1*`ε`^8*sin(phi)*cos(phi)+4.820745909*`ε`^2*sin(phi)^7*cos(phi)+.3981616844*`ε`^6*sin(phi)^3*cos(phi)+2.891022275*`ε`^4*sin(phi)^5*cos(phi)+0.1414814731e-3*`ε`^12*sin(phi)*cos(phi)+.2212715683*`ε`^2*sin(phi)*cos(phi)+2.252753163*`ε`^2*sin(phi)^15*cos(phi)+4.857729947*`ε`^4*sin(phi)^7*cos(phi)+.2775645236*`ε`^8*sin(phi)^5*cos(phi)+0.1560418629e-7*`ε`^18*sin(phi)*cos(phi)-.6257226193*sin(phi)*cos(phi)+.8667852062*sin(phi)^9*cos(phi)+0.5208654259e-1*sin(phi)^19*cos(phi)+.1265580305*sin(phi)^17*cos(phi)+.2494189998*sin(phi)^15*cos(phi)+.4337136311*sin(phi)^13*cos(phi)-.1331733921*sin(phi)^3*cos(phi)+.5467360220*sin(phi)^5*cos(phi)+.8861408610*sin(phi)^7*cos(phi)+.6645139802*sin(phi)^11*cos(phi)

 

{phi = 0., `ε` = `ε`}, {phi = 1.570796327, `ε` = `ε`}, {phi = phi, `ε` = RootOf(1560418629*_Z^18+(47406901510+493307879100*sin(phi)^2)*_Z^16+(40772142920000*sin(phi)^4+9608710101000*sin(phi)^2+958254350600)*_Z^14+(14148147310000+124975377900000*sin(phi)^2+534992600200000*sin(phi)^4+1277730241000000*sin(phi)^6)*_Z^12+(11242690220000000*sin(phi)^6+1186386550000000*sin(phi)^2+17424832170000000*sin(phi)^8+156264947800000+4588193106000000*sin(phi)^4)*_Z^10+(8234222560000000*sin(phi)^2+61944229700000000*sin(phi)^6+98851685540000000*sin(phi)^8+108012832000000000*sin(phi)^10+27756452360000000*sin(phi)^4+1283200926000000)*_Z^8+(7437311918000000+114825016900000000*sin(phi)^4+297577152600000000*sin(phi)^12+325818464400000000*sin(phi)^8+365611302800000000*sin(phi)^10+224213950200000000*sin(phi)^6+39816168440000000*sin(phi)^2)*_Z^6+(485772994700000000*sin(phi)^6+628227500400000000*sin(phi)^10+522269744600000000*sin(phi)^12+329395988600000000*sin(phi)^14+25653813580000000+617046303500000000*sin(phi)^8+116888409900000000*sin(phi)^2+289102227500000000*sin(phi)^4)*_Z^4+(22127156830000000+137581086300000000*sin(phi)^2+468911919600000000*sin(phi)^10+352010205100000000*sin(phi)^12+225275316300000000*sin(phi)^14+528250625500000000*sin(phi)^8+327003543500000000*sin(phi)^4+113436430000000000*sin(phi)^16+482074590900000000*sin(phi)^6)*_Z^2-62572261930000000-13317339210000000*sin(phi)^2+12655803050000000*sin(phi)^16+54673602200000000*sin(phi)^4+86678520620000000*sin(phi)^8+43371363110000000*sin(phi)^12+66451398020000000*sin(phi)^10+88614086100000000*sin(phi)^6+24941899980000000*sin(phi)^14+5208654259000000*sin(phi)^18)}

 

Error, (in fsolve) number of equations, 1, does not match number of variables, 2

 

``


 

Download equations_solve.mw

how can i solve this inequality in maple ? i want to solve y in terms of x and then plot y,x
could anyone help? tnx in advance

 


 

restart:

with(SolveTools[Inequality]):

eq:=1/(x*y^(2/3))*8.620689655172415*10^(-16)*(-3.11*10^23*x^2*y^(7/6)-3.92*10^19*y^(25/6)+2.14545039999999*10^29*(0.0108*exp(-45.07/y)+exp(-19.98/y^(1/3)-0.00935317203476387*y^2)))/(x+0.015*y^(1.2));

0.8620689655e-15*(-0.3110000000e24*x^2*y^(7/6)-0.3920000000e20*y^(25/6)+0.2317086432e28*exp(-45.07/y)+0.2145450400e30*exp(-19.98/y^(1/3)-0.935317203476387e-2*y^2))/(x*y^(2/3)*(x+0.15e-1*y^1.2))

(1)

solve({eq>0},y);

Warning, solutions may have been lost

 

 


 

Download solveee.mw

I need to install FGb package into Maple, the instruction is here:http://www-polsys.lip6.fr/~jcf/FGb/FGb/darwin_i386/index.html

But after I tried so many times, I am still unable to install the package(the instruction is a little bit unclear).  Basically, I downloaded the file FGb-1.61.macosx.tar.gz  in my home directory and unzip it. I created .mapleinit and put these commands inside:

libname:= “Macintosh HD/Users/jinhuilitar xvfz/tmp/FGb-1.61.macosx.tar.gz”/FGblib, libname:

mv <12627>/*.so <Macintosh HD/Users/jinhuili/tar xvfz/tmp/FGb-1.61.macosx.tar.gz>

 mv <12627>/FGblib <Macintosh HD/Users/jinhuili/tar xvfz/tmp/FGb-1.61.macosx.tar.gz>

 

I put .mapleinit in the home directory as well. But after I did all of these followed the instructions, I opened Maple and type with(FGb), it says FGb does not exist. I am so desperate, I have tried two days to solve this simple problem, please help.

I am trying to evaluate the following equation analytically but it gives back unevaluated then I tried fsolve which giving me the answer but I need phi greater than  zero. How can I avoid negative values. Also Is there any ways to solve it analytically. 

Please see the attachment

 

Download ANALYTIC.mw

 

Dear all,

 

I'd like to make a logplot with the option axes = boxed . 

let's say:

plot(x^3, x = 0 .. 2, axes = boxed)

But I need the tickmarks and numbers on both y-axes.

Could you tell me how to do this?

See the below. The two answers should be identical, but they are not.

Input:


Output:


 

Is it possible to edit 3D work space directly in maplesim? How?

Can we add a static (fixed) cylinder around a piston (translating cylinder) in the 3D workspace?

Can we draw in maple drawing and add it to maplesim 3D space?

Thanks for these basic yet unclear to for the past many months.

Ramakrishnan V

I have an excel macro file (enable macro or save as macro and run) in which the colour of cells keep changing by a macro named macro2.

Can we achieve it in maple or maple sim?

Any one please suggest a way for me to try out.

COLOR1.xlsx

Thanks.

Ramakrishnan V

Hi, 

Can we tell maple to give output in a form which contain any specific term or expression. For example- Can I tell maple to give output which contain (x^2+2*x+3) expression in the output. I used various combinations in collect command but it doesn't work. It is shown in enclosed maple worksheet.

I have some questions about output produced by maple. I have attached a maple worksheet in which I asked the questions in comments. Please help mein in this problem because it become very tedious to type each expression by hand in desired form. If maple produce it by some means it would be great help.

desired_form_in_output.mw

Thanks and Regards,

Nilesh

 

 

Hi,

I have two objective function which I want to prove concave with respect to four independent variables jointly (simultaneously).

`TP1 is the first objective function which is defined  in sol1 equation. TP2 is the second objective function which is defined  in sol3 equation. I want to maximize both function. There are four decision variables (independent variables) in both the objective function expression- T,E,W,p. Ten  parameters used in both the equations are- alpha, beta, c, h, m, o, s, u, a, b.

1) My first question is - How can I prove both the function as a concave function with respect to four decision variables jointly. Can I specify some range of parameters in which both these function would behave like a concave function. The feasible range of these parameters are-

`[alpha>0, 0<= beta<1, c>0, h>0, 0<= m<=1, o>0, s>0, u>0, a>0] [ b>0 for objective function TP1 and b>1 for objective function TP2].

Some other restriction on parameters and variables are-  p>c  ,  T<=m , T>=0, E>=0, W>=0, W>=E.

2) My second question is if I simplify my first question and specify some specific values of parameters as I done for both objective function, then I got two new objective function in sol2 and sol4 equation. Now can I prove these two objective function (sol2 & sol4) as concave with respect to four decision variables T,E,W,p jointly. I want to prove concavity for these two objective function because if it is proved concave then The first order optimality solution would give me the global optimal solution. 

Maple worksheet is enclosed.

concavity_proof_question.mw

Thanks and Regards,

Nilesh

I dragged into model space prismatic FixedFrame and RigidBody components and prismatic joint along y axis. I also set mass m = 1 kg. The manual says set K_S = K_S and K_K_d in inspector parameter setting. It did not work out. So i set values 12 and 0.1 for K_S and K_d. I sreated subsystem sub of rigidBody and followed the following instructions,

Quote" PrismaticJoint.PlacethePrismaticjointandRigidBodyinasubsystemcalledsub.Thisallowsthe EquationTemplatetogenerateequationsspecificallyfortheselectedsubsystem.
3. ClickTemplates( )intheMainToolbarandselecttheEquationstemplate. 4. IntheAttachmentfield,provideaworksheetnameandclickCreateAttachment.Your MapleSimmodelopensinaMapleworksheet,withtheSubsystemSelectionwindow.

ClickLoadSelectedSubsystem.Thesubcomponentparameterandvariablesload automaticallyintheParameterandVariableManipulationareas"

After this i wanted to modify the equations. I could not. The same equation is reassigned.

Parameter and variable rows - are as shown in manual, but a blank row not available for user's use. But how do i get the variable x(t) there and rename it?

Thanks for an example of this chapter with an application of its use., if available with anyone?

Ramakrishnan V

I have a plain text file, with hundreds of lines. I read using the command

ImportMatrix(file_to_read, source=csv):

The files has mixed fields which are integers and strings. The problem happens when a string happeneds to be "0". Maple interprets this when reading as the integer zero and not as the string zero! So that when I print this field later on using printf("%s",field) I get an error. (since I know this field is string, the format for output is fixed in the code). 

I made a very small example to illustrate. One line with 4 fields. The 4ht field is string.

This specific field is always a string with alphanumeric content in the file. It has " " around it. But sometimes the content of the string happens to be the string "0".  Maple gets confused and reads "0" as integer 0.

Is there a way to tell Maple not to read this string as an integer using ImportMatrix?

Here is MWE to show the problem


restart;
currentdirName :="C:\\bug";
currentdir(currentdirName);
file_to_read := cat(currentdirName,"\\maple_input.txt");
data:=ImportMatrix(file_to_read, source=csv):

print(data);
whattype(data[1,1]);
whattype(data[1,4]);

printf("%d,%d,%d,%s",data[1,1],data[1,2],data[1,3],data[1,4]):

 

The input file maple_input.txt has this one line in it:

1,2,3,"0"

As you can see, the 4ht field is a string.  But Maple reads it as integer:

 

This is using Maple 2017.1 on windows. Also Attached the text file.

1,2,3,"0"

Download maple_input.txt

 

Dear Community,

Entering a long line in 1D mode breaks at the right window bounday. How could I prevent this? I would like the entered line stay just as one, single, long line extending over the window boundary and I would like to use the bottom window scroll bar to view it. BTW it also does not appear, so how could I invoke it? I use Maple2016. I have neither found any information about this in the help, nor in the documentation.

Also is there a possibility to split the IDE screen vertically, as e.g. in Visual Studio? Looking at long programs this feature is very useful.

tx in advance,

best regards

Andras

Moments ago, when I consulted the help pages, there popped up an Update window followed by a download of some 100MB+, and then nothing more seemed to happen. What was that about?, I wonder. Was it automatic updating of the help pages, or what?

First 960 961 962 963 964 965 966 Last Page 962 of 2428