MaplePrimes Questions

Today I was working on some plots involving pH, which is defined as -log_10 ([hydronium]), that is, the negative of the base 10 logarithm of the concentration of hydronium in a solution.

I reached an expression for a variable x that is a function of an initial concentration C_i.

I wanted to plot the pH given by -log_10 (0.0001+x).

Note that x(0)=0, and so for this latter plot we should have the point (0, 4).

I am not able to see any part of the plot near (0,4), as can be seen below.

plot(-log[10](0.1e-3+x))

 

x := -0.2550000000e-2+0.5000000000e-4*sqrt(2601.+(2.000000000*10^6)*C__i)

-0.2550000000e-2+0.5000000000e-4*(2601.+2000000.000*C__i)^(1/2)

(1)

plot(-log[10](0.1e-3+x))

 

I want to see the plot being 4 at C__i = 0.

 

Note that subs({C__i = 0}, x) = 0. and evalf(subs({C__i = 0}, -log[10](0.1e-3+x))) = 4.000000000 

NULL

plot(-log[10](0.1e-3+x), C__i = 0 .. 1)

 

plot(-log[10](0.1e-3+x), C__i = 0 .. 1, view = [0 .. 1, 1 .. 4])

 

plot(-log[10](0.1e-3+x), C__i = 0 .. 1, view = [0 .. .1, 1 .. 4])

 

NULL

Download plotatzero.mw

I try to construct a system of coefficient but  i don't know why distribute of them is not working, beside this there is any other way for build this kind of systems 

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

_local(gamma)

``

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

declare(u(x, y, z, t))

u(x, y, z, t)*`will now be displayed as`*u

(2)

declare(f(x, y, z, t))

f(x, y, z, t)*`will now be displayed as`*f

(3)

pde := 9*(diff(u(x, y, z, t), t, x))+diff(u(x, y, z, t), `$`(x, 6))-5*(diff(u(x, y, z, t), `$`(x, 3), y)+diff(u(x, y, z, t), `$`(y, 2)))+15*((diff(u(x, y, z, t), `$`(x, 2)))*(diff(u(x, y, z, t), `$`(x, 3)))+(diff(u(x, y, z, t), x))*(diff(u(x, y, z, t), `$`(x, 4)))-(diff(u(x, y, z, t), x))*(diff(u(x, y, z, t), x, y))-(diff(u(x, y, z, t), `$`(x, 2)))*(diff(u(x, y, z, t), y)))+45*(diff(u(x, y, z, t), x))^2*(diff(u(x, y, z, t), `$`(x, 2)))+alpha*(diff(u(x, y, z, t), `$`(x, 2)))+beta*(diff(u(x, y, z, t), x, y))+delta*(diff(u(x, y, z, t), x, z))

9*(diff(diff(u(x, y, z, t), t), x))+diff(diff(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x), x), x)-5*(diff(diff(diff(diff(u(x, y, z, t), x), x), x), y))-5*(diff(diff(u(x, y, z, t), y), y))+15*(diff(diff(u(x, y, z, t), x), x))*(diff(diff(diff(u(x, y, z, t), x), x), x))+15*(diff(u(x, y, z, t), x))*(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x))-15*(diff(u(x, y, z, t), x))*(diff(diff(u(x, y, z, t), x), y))-15*(diff(diff(u(x, y, z, t), x), x))*(diff(u(x, y, z, t), y))+45*(diff(u(x, y, z, t), x))^2*(diff(diff(u(x, y, z, t), x), x))+alpha*(diff(diff(u(x, y, z, t), x), x))+beta*(diff(diff(u(x, y, z, t), x), y))+delta*(diff(diff(u(x, y, z, t), x), z))

(4)

``

oppde := [op(expand(pde))]; u_occurrences := map(proc (i) options operator, arrow; numelems(select(has, [op([op(i)])], u)) end proc, oppde); linear_op_indices := ListTools:-SearchAll(1, u_occurrences); pde_linear := add(oppde[[linear_op_indices]]); pde_nonlinear := expand(simplify(expand(pde)-pde_linear))

9*(diff(diff(u(x, y, z, t), t), x))+diff(diff(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x), x), x)-5*(diff(diff(diff(diff(u(x, y, z, t), x), x), x), y))-5*(diff(diff(u(x, y, z, t), y), y))+alpha*(diff(diff(u(x, y, z, t), x), x))+beta*(diff(diff(u(x, y, z, t), x), y))+delta*(diff(diff(u(x, y, z, t), x), z))

 

15*(diff(diff(u(x, y, z, t), x), x))*(diff(diff(diff(u(x, y, z, t), x), x), x))+15*(diff(u(x, y, z, t), x))*(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x))-15*(diff(u(x, y, z, t), x))*(diff(diff(u(x, y, z, t), x), y))-15*(diff(diff(u(x, y, z, t), x), x))*(diff(u(x, y, z, t), y))+45*(diff(u(x, y, z, t), x))^2*(diff(diff(u(x, y, z, t), x), x))

(5)

H := u(x, y, z, t) = 2*(diff(ln(f(x, y, z, t)), x))

u(x, y, z, t) = 2*(diff(f(x, y, z, t), x))/f(x, y, z, t)

(6)

H1 := int(pde_linear, x)

(diff(u(x, y, z, t), z))*delta+alpha*(diff(u(x, y, z, t), x))+beta*(diff(u(x, y, z, t), y))-5*(int(diff(diff(u(x, y, z, t), y), y), x))+9*(diff(u(x, y, z, t), t))+diff(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x), x)-5*(diff(diff(diff(u(x, y, z, t), x), x), y))

(7)

L := eval(H1, H) = 0

-18*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), t))/f(x, y, z, t)^2-12*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-30*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^2-20*(diff(diff(diff(f(x, y, z, t), x), x), x))^2/f(x, y, z, t)^2+60*(diff(diff(f(x, y, z, t), x), x))^3/f(x, y, z, t)^3-240*(diff(f(x, y, z, t), x))^6/f(x, y, z, t)^6+10*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+30*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+30*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2-60*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^3+60*(diff(f(x, y, z, t), x))^3*(diff(f(x, y, z, t), y))/f(x, y, z, t)^4+60*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3-240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^4+240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^3+720*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^4/f(x, y, z, t)^5-540*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^4-60*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3+(2*(diff(diff(f(x, y, z, t), x), z))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), z))/f(x, y, z, t)^2)*delta+alpha*(2*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^2)+beta*(2*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2)-10*(diff(diff(f(x, y, z, t), y), y))/f(x, y, z, t)+10*(diff(f(x, y, z, t), y))^2/f(x, y, z, t)^2+18*(diff(diff(f(x, y, z, t), t), x))/f(x, y, z, t)+2*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))/f(x, y, z, t)-10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))/f(x, y, z, t) = 0

(8)

numer(lhs(240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^3-60*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3-18*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), t))/f(x, y, z, t)^2-12*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-30*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^2+10*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+30*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+30*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2-60*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^3+60*(diff(f(x, y, z, t), x))^3*(diff(f(x, y, z, t), y))/f(x, y, z, t)^4+60*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3-240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^4+720*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^4/f(x, y, z, t)^5-540*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^4+beta*(2*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2)-20*(diff(diff(diff(f(x, y, z, t), x), x), x))^2/f(x, y, z, t)^2+60*(diff(diff(f(x, y, z, t), x), x))^3/f(x, y, z, t)^3-240*(diff(f(x, y, z, t), x))^6/f(x, y, z, t)^6-10*(diff(diff(f(x, y, z, t), y), y))/f(x, y, z, t)+10*(diff(f(x, y, z, t), y))^2/f(x, y, z, t)^2+18*(diff(diff(f(x, y, z, t), t), x))/f(x, y, z, t)+2*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))/f(x, y, z, t)-10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))/f(x, y, z, t)+(2*(diff(diff(f(x, y, z, t), x), z))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), z))/f(x, y, z, t)^2)*delta+alpha*(2*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^2) = 0))*denom(rhs(240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^3-60*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3-18*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), t))/f(x, y, z, t)^2-12*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-30*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^2+10*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+30*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+30*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2-60*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^3+60*(diff(f(x, y, z, t), x))^3*(diff(f(x, y, z, t), y))/f(x, y, z, t)^4+60*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3-240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^4+720*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^4/f(x, y, z, t)^5-540*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^4+beta*(2*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2)-20*(diff(diff(diff(f(x, y, z, t), x), x), x))^2/f(x, y, z, t)^2+60*(diff(diff(f(x, y, z, t), x), x))^3/f(x, y, z, t)^3-240*(diff(f(x, y, z, t), x))^6/f(x, y, z, t)^6-10*(diff(diff(f(x, y, z, t), y), y))/f(x, y, z, t)+10*(diff(f(x, y, z, t), y))^2/f(x, y, z, t)^2+18*(diff(diff(f(x, y, z, t), t), x))/f(x, y, z, t)+2*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))/f(x, y, z, t)-10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))/f(x, y, z, t)+(2*(diff(diff(f(x, y, z, t), x), z))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), z))/f(x, y, z, t)^2)*delta+alpha*(2*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^2) = 0)) = numer(rhs(240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^3-60*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3-18*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), t))/f(x, y, z, t)^2-12*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-30*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^2+10*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+30*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+30*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2-60*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^3+60*(diff(f(x, y, z, t), x))^3*(diff(f(x, y, z, t), y))/f(x, y, z, t)^4+60*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3-240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^4+720*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^4/f(x, y, z, t)^5-540*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^4+beta*(2*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2)-20*(diff(diff(diff(f(x, y, z, t), x), x), x))^2/f(x, y, z, t)^2+60*(diff(diff(f(x, y, z, t), x), x))^3/f(x, y, z, t)^3-240*(diff(f(x, y, z, t), x))^6/f(x, y, z, t)^6-10*(diff(diff(f(x, y, z, t), y), y))/f(x, y, z, t)+10*(diff(f(x, y, z, t), y))^2/f(x, y, z, t)^2+18*(diff(diff(f(x, y, z, t), t), x))/f(x, y, z, t)+2*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))/f(x, y, z, t)-10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))/f(x, y, z, t)+(2*(diff(diff(f(x, y, z, t), x), z))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), z))/f(x, y, z, t)^2)*delta+alpha*(2*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^2) = 0))*denom(lhs(240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^3-60*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3-18*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), t))/f(x, y, z, t)^2-12*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-30*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^2+10*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+30*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+30*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2-60*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^3+60*(diff(f(x, y, z, t), x))^3*(diff(f(x, y, z, t), y))/f(x, y, z, t)^4+60*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3-240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^4+720*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^4/f(x, y, z, t)^5-540*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^4+beta*(2*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2)-20*(diff(diff(diff(f(x, y, z, t), x), x), x))^2/f(x, y, z, t)^2+60*(diff(diff(f(x, y, z, t), x), x))^3/f(x, y, z, t)^3-240*(diff(f(x, y, z, t), x))^6/f(x, y, z, t)^6-10*(diff(diff(f(x, y, z, t), y), y))/f(x, y, z, t)+10*(diff(f(x, y, z, t), y))^2/f(x, y, z, t)^2+18*(diff(diff(f(x, y, z, t), t), x))/f(x, y, z, t)+2*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))/f(x, y, z, t)-10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))/f(x, y, z, t)+(2*(diff(diff(f(x, y, z, t), x), z))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), z))/f(x, y, z, t)^2)*delta+alpha*(2*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^2) = 0))

2*f(x, y, z, t)^5*(diff(diff(f(x, y, z, t), x), x))*alpha+2*f(x, y, z, t)^5*(diff(diff(f(x, y, z, t), x), y))*beta+720*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^4*f(x, y, z, t)-240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^3*f(x, y, z, t)^2+60*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^3-60*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), y))*f(x, y, z, t)^3-540*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^2-18*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), t))*f(x, y, z, t)^4-12*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4+30*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4-30*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))*f(x, y, z, t)^4+30*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(f(x, y, z, t), x), y))*f(x, y, z, t)^4+10*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), y))*f(x, y, z, t)^4+2*(diff(diff(f(x, y, z, t), x), z))*delta*f(x, y, z, t)^5+60*(diff(f(x, y, z, t), x))^3*(diff(f(x, y, z, t), y))*f(x, y, z, t)^2-2*(diff(f(x, y, z, t), x))^2*alpha*f(x, y, z, t)^4-240*(diff(f(x, y, z, t), x))^6-2*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4*(diff(f(x, y, z, t), y))*beta-2*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4*(diff(f(x, y, z, t), z))*delta+240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))*f(x, y, z, t)^3-60*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))*f(x, y, z, t)^3+2*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))*f(x, y, z, t)^5-10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))*f(x, y, z, t)^5-20*(diff(diff(diff(f(x, y, z, t), x), x), x))^2*f(x, y, z, t)^4+60*(diff(diff(f(x, y, z, t), x), x))^3*f(x, y, z, t)^3+18*(diff(diff(f(x, y, z, t), t), x))*f(x, y, z, t)^5-10*(diff(diff(f(x, y, z, t), y), y))*f(x, y, z, t)^5+10*(diff(f(x, y, z, t), y))^2*f(x, y, z, t)^4 = 0

(9)

simplify(2*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))*f(x, y, z, t)^5-10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))*f(x, y, z, t)^5-20*(diff(diff(diff(f(x, y, z, t), x), x), x))^2*f(x, y, z, t)^4+60*(diff(diff(f(x, y, z, t), x), x))^3*f(x, y, z, t)^3+18*(diff(diff(f(x, y, z, t), t), x))*f(x, y, z, t)^5-10*(diff(diff(f(x, y, z, t), y), y))*f(x, y, z, t)^5+10*(diff(f(x, y, z, t), y))^2*f(x, y, z, t)^4+2*f(x, y, z, t)^5*(diff(diff(f(x, y, z, t), x), y))*beta+720*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^4*f(x, y, z, t)-240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^3*f(x, y, z, t)^2+60*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^3-60*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), y))*f(x, y, z, t)^3-540*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^2-18*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), t))*f(x, y, z, t)^4-12*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4+30*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4-30*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))*f(x, y, z, t)^4+30*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(f(x, y, z, t), x), y))*f(x, y, z, t)^4+10*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), y))*f(x, y, z, t)^4+2*(diff(diff(f(x, y, z, t), x), z))*delta*f(x, y, z, t)^5+60*(diff(f(x, y, z, t), x))^3*(diff(f(x, y, z, t), y))*f(x, y, z, t)^2-2*(diff(f(x, y, z, t), x))^2*alpha*f(x, y, z, t)^4+2*f(x, y, z, t)^5*(diff(diff(f(x, y, z, t), x), x))*alpha-240*(diff(f(x, y, z, t), x))^6-2*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4*(diff(f(x, y, z, t), y))*beta-2*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4*(diff(f(x, y, z, t), z))*delta+240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))*f(x, y, z, t)^3-60*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))*f(x, y, z, t)^3 = 0)

2*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))*f(x, y, z, t)^5-12*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4+30*(2*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^3-f(x, y, z, t)^4*(diff(diff(f(x, y, z, t), x), x)))*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))-10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))*f(x, y, z, t)^5-20*(diff(diff(diff(f(x, y, z, t), x), x), x))^2*f(x, y, z, t)^4+10*(-24*(diff(f(x, y, z, t), x))^3*f(x, y, z, t)^2+24*(diff(f(x, y, z, t), x))*f(x, y, z, t)^3*(diff(diff(f(x, y, z, t), x), x))+(diff(f(x, y, z, t), y))*f(x, y, z, t)^4)*(diff(diff(diff(f(x, y, z, t), x), x), x))+30*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4+60*(diff(diff(f(x, y, z, t), x), x))^3*f(x, y, z, t)^3-540*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^2+2*(alpha*f(x, y, z, t)^5+360*(diff(f(x, y, z, t), x))^4*f(x, y, z, t)-30*(diff(f(x, y, z, t), y))*f(x, y, z, t)^3*(diff(f(x, y, z, t), x))+15*f(x, y, z, t)^4*(diff(diff(f(x, y, z, t), x), y)))*(diff(diff(f(x, y, z, t), x), x))+2*(beta*f(x, y, z, t)^5-30*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^3)*(diff(diff(f(x, y, z, t), x), y))+18*(diff(diff(f(x, y, z, t), t), x))*f(x, y, z, t)^5+2*(diff(diff(f(x, y, z, t), x), z))*delta*f(x, y, z, t)^5-10*(diff(diff(f(x, y, z, t), y), y))*f(x, y, z, t)^5-240*(diff(f(x, y, z, t), x))^6+60*(diff(f(x, y, z, t), x))^3*(diff(f(x, y, z, t), y))*f(x, y, z, t)^2-2*(diff(f(x, y, z, t), x))^2*alpha*f(x, y, z, t)^4-2*f(x, y, z, t)^4*(beta*(diff(f(x, y, z, t), y))+(diff(f(x, y, z, t), z))*delta+9*(diff(f(x, y, z, t), t)))*(diff(f(x, y, z, t), x))+10*(diff(f(x, y, z, t), y))^2*f(x, y, z, t)^4 = 0

(10)

F1 := %*(1/2)

(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))*f(x, y, z, t)^5-6*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4+15*(2*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^3-f(x, y, z, t)^4*(diff(diff(f(x, y, z, t), x), x)))*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))-5*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))*f(x, y, z, t)^5-10*(diff(diff(diff(f(x, y, z, t), x), x), x))^2*f(x, y, z, t)^4+5*(-24*(diff(f(x, y, z, t), x))^3*f(x, y, z, t)^2+24*(diff(f(x, y, z, t), x))*f(x, y, z, t)^3*(diff(diff(f(x, y, z, t), x), x))+(diff(f(x, y, z, t), y))*f(x, y, z, t)^4)*(diff(diff(diff(f(x, y, z, t), x), x), x))+15*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4+30*(diff(diff(f(x, y, z, t), x), x))^3*f(x, y, z, t)^3-270*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^2+(alpha*f(x, y, z, t)^5+360*(diff(f(x, y, z, t), x))^4*f(x, y, z, t)-30*(diff(f(x, y, z, t), y))*f(x, y, z, t)^3*(diff(f(x, y, z, t), x))+15*f(x, y, z, t)^4*(diff(diff(f(x, y, z, t), x), y)))*(diff(diff(f(x, y, z, t), x), x))+(beta*f(x, y, z, t)^5-30*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^3)*(diff(diff(f(x, y, z, t), x), y))+9*(diff(diff(f(x, y, z, t), t), x))*f(x, y, z, t)^5+(diff(diff(f(x, y, z, t), x), z))*delta*f(x, y, z, t)^5-5*(diff(diff(f(x, y, z, t), y), y))*f(x, y, z, t)^5-120*(diff(f(x, y, z, t), x))^6+30*(diff(f(x, y, z, t), x))^3*(diff(f(x, y, z, t), y))*f(x, y, z, t)^2-(diff(f(x, y, z, t), x))^2*alpha*f(x, y, z, t)^4-f(x, y, z, t)^4*(beta*(diff(f(x, y, z, t), y))+(diff(f(x, y, z, t), z))*delta+9*(diff(f(x, y, z, t), t)))*(diff(f(x, y, z, t), x))+5*(diff(f(x, y, z, t), y))^2*f(x, y, z, t)^4 = 0

(11)

collect(F1, {alpha, beta, f(x, y, z, t)})

(-f(x, y, z, t)^4*(diff(f(x, y, z, t), x))^2+f(x, y, z, t)^5*(diff(diff(f(x, y, z, t), x), x)))*alpha+(-(diff(f(x, y, z, t), y))*f(x, y, z, t)^4*(diff(f(x, y, z, t), x))+f(x, y, z, t)^5*(diff(diff(f(x, y, z, t), x), y)))*beta+((diff(diff(f(x, y, z, t), x), z))*delta+diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x)-5*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))+9*(diff(diff(f(x, y, z, t), t), x))-5*(diff(diff(f(x, y, z, t), y), y)))*f(x, y, z, t)^5+(-6*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))-15*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))-10*(diff(diff(diff(f(x, y, z, t), x), x), x))^2+5*(diff(f(x, y, z, t), y))*(diff(diff(diff(f(x, y, z, t), x), x), x))+15*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))+15*(diff(diff(f(x, y, z, t), x), y))*(diff(diff(f(x, y, z, t), x), x))-((diff(f(x, y, z, t), z))*delta+9*(diff(f(x, y, z, t), t)))*(diff(f(x, y, z, t), x))+5*(diff(f(x, y, z, t), y))^2)*f(x, y, z, t)^4+(30*(diff(f(x, y, z, t), x))^2*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))-30*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), y))+120*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(diff(f(x, y, z, t), x), x), x))-30*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))*(diff(diff(f(x, y, z, t), x), x))+30*(diff(diff(f(x, y, z, t), x), x))^3)*f(x, y, z, t)^3+(-120*(diff(f(x, y, z, t), x))^3*(diff(diff(diff(f(x, y, z, t), x), x), x))+30*(diff(f(x, y, z, t), x))^3*(diff(f(x, y, z, t), y))-270*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^2)*f(x, y, z, t)^2+360*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^4*f(x, y, z, t)-120*(diff(f(x, y, z, t), x))^6 = 0

(12)

NULL

T := f(x, y, z, t) = g(x, y, z, t)^2+h(x, y, z, t)^2+a[11]

T1 := g(x, y, z, t) = t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5]

T2 := h(x, y, z, t) = t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10]

L2 := subs({T1, T2}, T)

f(x, y, z, t) = (t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11]

(13)

L3 := eval(F1, L2)

30*(2*a[1]^2+2*a[6]^2)^3*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^3-270*(2*a[1]^2+2*a[6]^2)^2*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[1]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[6])^2*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^2+(alpha*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^5+360*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[1]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[6])^4*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])-30*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[2]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[7])*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^3*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[1]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[6])+15*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^4*(2*a[1]*a[2]+2*a[6]*a[7]))*(2*a[1]^2+2*a[6]^2)+(beta*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^5-30*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[1]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[6])^2*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^3)*(2*a[1]*a[2]+2*a[6]*a[7])+9*(2*a[1]*a[4]+2*a[6]*a[9])*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^5+(2*a[1]*a[3]+2*a[6]*a[8])*delta*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^5-5*(2*a[2]^2+2*a[7]^2)*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^5-120*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[1]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[6])^6+30*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[1]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[6])^3*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[2]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[7])*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^2-(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[1]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[6])^2*alpha*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^4-((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^4*(beta*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[2]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[7])+(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[3]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[8])*delta+18*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[4]+18*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[9])*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[1]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[6])+5*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[2]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[7])^2*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^4 = 0

(14)

L4 := collect(L3, [x, y, z, t], 'distributed')

Warning,  computation interrupted

 

` `

(15)

Download systems.mw

When I measure the summary_Tension of the cable directly, the force of the cable suspending the weight is always somewhat different from the gravity of the weight. I'm not sure what summary_Tension a and b stand for and why they differ from the gravity force? I set the acceleration of gravity, g, to 10. m =1kg

This never happened to me before.

Without any changes made in the worksheet, and just executing it again, suddenly Maple 24 gives me all output that starts with

typesetting:-mprintslash

etc

What the heck is this ? and where has the normal output suddenly gone to ?

Before this change Maple did not want to stop an execution on a limit. I had to kill the mserver which then allowed me to save the docuemnt. After that the document has all this unusable typeset nonsense as output.

I opened a new page and pasted the commands into that document. Problem remains the same, so it seems to be something in the system wide config that was changed.

Here is what is causing the problem:

What I noticed  is that my output is now "Line Printer" as default. How did that happen ? I never did that. It must be a consequence of the infinite limit calculation that could not be interrupted (whish Maple will fix their break and interrupt commands).

So how do I set all output to Maple Output. I see no such ability in config. It states there that "Output Display" is set to "Maple Output" , but every new document has line printer as output !!!

Totally unusable now.

everytime I run mint I get hundreds of messages coming from child modules, saying

           These names were used as global names but were not declared:  A

Where A above is the name of the top level module.

This only shows from commnd line mint, and not from maplemint used in the GUI.

The set I have is 

A:=module()
    export module foo_type()
       option object;
       ....
    end module;

     export B := module()  #child module
       .....
     end module;
end module;

  In the child module B above, whever I do 

                 o:=Object(A:-foo_type);

mint gives the above warning.

It is clear the name A should not be declared, as the module B is child to it so it can see it.

The workaround is to add  global A inside each child module to remove this warning. 

But why is this needed?

Here is a worksheet showing maplemint does not show this warning, and below example using command line mint on same exact code, which does

restart;

interface(version);

`Standard Worksheet Interface, Maple 2025.0, Linux, March 24 2025 Build ID 1909157`

A:=module()

    export module foo_type()
       option object;
       export name::string:="";
    end module;

    export B := module()
       export step := proc()::A:-foo_type;                 
       local o::A:-foo_type;   
          o:=Object(A:-foo_type);
          o:-name:="x";
          return o;
       end proc;

    end module;

end module;

_m128759219362528

maplemint(A)

Nested Module foo_type() on lines 1 to 2
  These exported variables were never used:  name::string

 

 

Download mint_isse_april_25_2025.mw

Here is A.mpl 

A:=module()

    export module foo_type()
       option object;
       export name::string:="";
    end module;

    export B := module()    
       #global A;     why is this needed for mint??
       export step := proc()::A:-foo_type;                 
       local o::A:-foo_type;   
          o:=Object(A:-foo_type);
          o:-name:="x";
          return o;
       end proc;

    end module;
end module;

And now the command

>/home/me/maple2025/bin.X86_64_LINUX/mint A.mpl
    |\^/|      Maple 2025 Diagnostic Program
._|\|   |/|_.  Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2025
 \  MINT   /   All rights reserved. Maple is a trademark of
 <____ ____>   Waterloo Maple Inc.
      |        
Nested Procedure step() on lines 10 to 15
  These names were used as global names but were not declared:  A
Module A() on lines 1 to 18
  These exported variables were never used:  foo_type
>

You see the difference. mint complains that A is not declared.

Is this a bug in mint?

I tried loading the last latest update of the physics package for Maple 2022 version 1409

It seems all the versions of the physics updates from version 1340 to 1409 are missing?  I can download 1339 and 1410 but all the versions in between are missing. 

MapleCloud opend from Maple2025 and 2024.

Has this extended scrollbar always been like this?
Maybe it is a browser thing.
Which browser is Maple using?
Are there any settings I could adjust?

I aim to conduct a numerical frequency sweep analysis on a nonlinear, coupled two-degree-of-freedom vibration model and compare the results with the analytical solution. However, I am currently facing two main difficulties:

  1. I am unsure how to determine whether the computed response has reached a steady state. If I simply use the maximum value to represent the steady-state amplitude, it can be misleading—since transient responses prior to reaching steady state may yield a higher peak, as seen in the uploaded code.

  2. I do not know how to properly select the steady-state result from the previous frequency as the initial condition for the next frequency step.
    2.mw

The Maple 2024 default Document is largely unreadable to me. the multiplication sign is a minute dot that I miss most of the time on very high resolution monitors.

What really works well for me is Maple Input as was used in Maple 9.5. A Pleasure to work with. Using Maple 2024 it is a real pain to "go figure" all the time.

I tried the Global Config, but there is no way to set the default font and the defualt color so I can get the exact same text and color as Maple 9.5.
After I set the colors to bright red, and change to Monospace 12 font and use mapleinput, all is well.
However there is no way to save this setup as the configuration has no way to set font and color. It does set mapleinput at least.

So how do I fix this GLOBALLY so I dont have to run into Maple2024's microscopic math.

I am trying to create a diagram in Maple using its plotting tools and simulate a simply connected domain and multiple paths between two points.

My first try is the following

with(plots); with(plottools)

 

 

curveDomainPts := [[-1, 0], [-.7, 1.2], [0, 1.5], [.7, 1.2], [1.2, 0], [.7, -1.2], [0, -1.4], [-.7, -1.2], [-1, 0]]; domain := polygon(curveDomainPts, color = "LightBlue", transparency = .4); z0 := [-.8, .6]; z := [.9, -.4]; curve1_pts := [[-.8, .6], [-.3, 1.0], [.4, .5], [.9, -.4]]; curve2_pts := [[-.8, .6], [-.7, 0.], [.2, -.6], [.9, -.4]]; curve1 := pointplot(curve1_pts, color = red, linestyle = dot, thickness = 2, connect = true); curve2 := pointplot(curve2_pts, color = green, linestyle = dot, thickness = 2, connect = true); pt1 := pointplot([z0], symbol = solidcircle, symbolsize = 15, color = black); pt2 := pointplot([z], symbol = solidcircle, symbolsize = 15, color = black); label1 := textplot([z0[1], z0[2]-.1, z__0], font = [Helvetica, Bold, 14]); label2 := textplot([z[1], z[2]-.1, "z"], font = [Helvetica, Bold, 14]); display(domain, curve1, curve2, pt1, pt2, label1, label2, scaling = constrained, axes = none, title = "Curved Domain with Arbitrary Paths")

 
 

NULL

I would like to ask if I could create something like that in Maple or should I use another software to draw it?

Download curved_domain.mw

Dear all
How can I compute the integral from a to b of   y^2 cot(y)

Thank you

I use  Maple 2015 and I try to understand how the simplification rules apply in the case of the expression 

f := n -> (ln(x)^n)^(1/n)

Here n is assumed to be a strictly positive and I consider only the cases "n is an integer" or "1/n is an integer".

All the questions are orange written in the attached file and resumed below:

  1. Why simplify(f(2)) simplifies f(2) whereas simplify(f(n)) doesn't simplifies f(n) for any integer n > 2?
     
  2. Why simplify(f(1/n)) simplifies f(1/n)?
     
  3. Why simplify(f(3)) with adhoc assumptions returns a simplified expression of some form whereas, for any integer n > 3,  simplify(f(n)) with (the same corresponding) adhoc assumptions returns a simplified expression of a complete different form than with n=3?

Can you please have a look to it and give me some clarifications?
Simplification_rules.mw

Thanks in advance

When using FunctionAdvisor(branch_cuts, f(x), plot="2D"); how do I enforce discontinuous lines be presented with option discont=true?

To save space, I've decided to show problems found so far in Maple 2025 in one worksheet.

Hoping someone will figure the cause. The big problem is that these internal errors can not be cought using try/catch. Which means there is no user workaround. If they can be cought, then it is not a big problem.

Some from odetest, some from int and some from simplify and some from symgen.

interface(version);

`Standard Worksheet Interface, Maple 2025.0, Linux, March 24 2025 Build ID 1909157`

Physics:-Version()

`The "Physics Updates" version in the MapleCloud is 1861 and is the same as the version installed in this computer, created 2025, April 10, 15:58 hours Pacific Time.`

restart;

#18573
e:=(1/4*(RootOf(-100*_Z^4*exp(arctanh(1/3*(5*_Z^2-32*_Z+80)/(_Z^2-16))+arctanh(1/3*(5*_Z^2+32*_Z+80)/(_Z^2-16)))+x^(16/5)*_Z^4*exp(_C11)^16-68*x^(16/5)*_Z^2*exp(_C11)^16+256*x^(16/5)*exp(_C11)^16)^2+16)/RootOf(-100*_Z^4*exp(arctanh(1/3*(5*_Z^2-32*_Z+80)/(_Z^2-16))+arctanh(1/3*(5*_Z^2+32*_Z+80)/(_Z^2-16)))+x^(16/5)*_Z^4*exp(_C11)^16-68*x^(16/5)*_Z^2*exp(_C11)^16+256*x^(16/5)*exp(_C11)^16)-1/2*(1/4*(RootOf(-100*_Z^4*exp(arctanh(1/3*(5*_Z^2-32*_Z+80)/(_Z^2-16))+arctanh(1/3*(5*_Z^2+32*_Z+80)/(_Z^2-16)))+x^(16/5)*_Z^4*exp(_C11)^16-68*x^(16/5)*_Z^2*exp(_C11)^16+256*x^(16/5)*exp(_C11)^16)^2+16)^2/RootOf(-100*_Z^4*exp(arctanh(1/3*(5*_Z^2-32*_Z+80)/(_Z^2-16))+arctanh(1/3*(5*_Z^2+32*_Z+80)/(_Z^2-16)))+x^(16/5)*_Z^4*exp(_C11)^16-68*x^(16/5)*_Z^2*exp(_C11)^16+256*x^(16/5)*exp(_C11)^16)^2-16)^(1/2))*x:

try
    timelimit(60,simplify(e));
catch:
    print("OK, cought error");
end try;

 

Error, (in anonymous procedure called from depends) too many levels of recursion

restart;

#12178
ode:=diff(y(x),x) = lambda*arctan(x)^n*y(x)^2+beta*m*x^(m-1)-lambda*beta^2*x^(2*m)*arctan(x)^n:
try
    timelimit(60,DEtools:-symgen(ode));
catch:
    print("OK, cought error");
end try;

Error, (in simplify/exp/exp) too many levels of recursion

restart;

#12181
ode:=diff(x(y),y) = x(y)/(x(y)^(2*m)*arctan(x(y))^m*a*y^2+x(y)^n*arctan(x(y))^m*b*y+arctan(x(y))^m*c-n*y):
try
    timelimit(60,DEtools:-symgen(ode));
catch:
    print("OK, cought error");
end try;

Error, (in simplify/exp/exp) too many levels of recursion

restart;

#12187
ode:=diff(y(x),x)=lambda*arccot(x)^n*y(x)^2+beta*m*x^(m-1)-lambda*beta^2*x^(2*m)*arccot(x)^n:
try
    timelimit(60,DEtools:-symgen(ode));
catch:
    print("OK, cought error");
end try;

Error, (in simplify/exp/exp) too many levels of recursion

restart;

#12190
ode:=diff(x(y),y) = x(y)/(x(y)^(2*m)*arccot(x(y))^m*a*y^2+x(y)^n*arccot(x(y))^m*b*y+arccot(x(y))^m*c-n*y):
try
    timelimit(60,DEtools:-symgen(ode));
catch:
    print("OK, cought error");
end try;

Error, (in simplify/exp/exp) too many levels of recursion

restart;

#10708
e:=2/(ln(x)-exp(1/x))*x*diff(diff(u(x),x),x)-(-2/(ln(x)-exp(1/x))^2*x*(1/x+1/x^2*exp(1/x))+2/(ln(x)-exp(1/x))+8*x^3/(ln(x)-exp(1/x))^2)*diff(u(x),x)-4/(ln(x)-exp(1/x))^3*x^2*(-2*x^3+ln(x)-exp(1/x)-2*x)*u(x):
e:=evala(e):
try
    timelimit(60,int(e,x));
catch:
    print("OK, cought error");
end try;

Error, (in anonymous procedure called from property/ConvertRelation) too many levels of recursion

restart;

#6764
e:=1/2/x^(7/2)*2^(1/2)*Pi^(1/2)/(1/x)^(1/2)*cos(1/x)*(1+x):
try
    timelimit(60,int(e,x));
catch:
    print("OK, cought error");
end try;

Error, (in simplify/common_factors/do) too many levels of recursion

restart;

#19337

sol:=-y+Intat((_a*((_a^2+1)/_a^2)^(1/2)+_a^2+1)*exp(-1/2*(arctanh(1/(_a^2+1)^(1/2))*((_a^2+1)/_a^2)^(1/2)*_a^3+2*_C3*(_a^2+1)^(1/2)*_a^2+(_a^2+1)^(1/2)*((_a^2+1)/_a^2)^(1/2)*_a+(_a^2+1)^(1/2))/(_a^2+1)^(1/2)/_a^2)/((_a^2+1)/_a^2)^(1/2)/_a^5,_a = RootOf(x(y)-exp(-1/2*(arctanh(1/(_Z^2+1)^(1/2))*((_Z^2+1)/_Z^2)^(1/2)*_Z^3+2*_C3*(_Z^2+1)^(1/2)*_Z^2+(_Z^2+1)^(1/2)*((_Z^2+1)/_Z^2)^(1/2)*_Z+(_Z^2+1)^(1/2))/(_Z^2+1)^(1/2)/_Z^2)))+_C4 = 0:
ode:=-1/2/(diff(x(y),y)^2+1)^(1/2)*(diff(x(y),y)*(arctanh(1/(diff(x(y),y)^2+1)^(1/2))*diff(x(y),y)^2+(diff(x(y),y)^2+1)^(1/2))*((diff(x(y),y)^2+1)/diff(x(y),y)^2)^(1/2)+(diff(x(y),y)^2+1)^(1/2))/diff(x(y),y)^2 = ln(x(y))+_C3:
try
    timelimit(60,odetest(sol,ode));
catch:
    print("OK, cought error");
end try;
 

Error, (in unknown) too many levels of recursion

 

 

Download collection_of_problems_maple_2025.mw

Below is worksheet showing output in Maple 2024.2. It shows NO internal error is generated in any one. Either a result is returned, or it timedout as expected.

This shows all the above cases are regressions in Maple 2025.

interface(version);

`Standard Worksheet Interface, Maple 2024.2, Windows 10, October 29 2024 Build ID 1872373`

Physics:-Version()

`The "Physics Updates" version in the MapleCloud is 1861. The version installed in this computer is 1849 created 2025, March 12, 12:37 hours Pacific Time, found in the directory C:\Users\Owner\maple\toolbox\2024\Physics Updates\lib\`

restart;

#18573
e:=(1/4*(RootOf(-100*_Z^4*exp(arctanh(1/3*(5*_Z^2-32*_Z+80)/(_Z^2-16))+arctanh(1/3*(5*_Z^2+32*_Z+80)/(_Z^2-16)))+x^(16/5)*_Z^4*exp(_C11)^16-68*x^(16/5)*_Z^2*exp(_C11)^16+256*x^(16/5)*exp(_C11)^16)^2+16)/RootOf(-100*_Z^4*exp(arctanh(1/3*(5*_Z^2-32*_Z+80)/(_Z^2-16))+arctanh(1/3*(5*_Z^2+32*_Z+80)/(_Z^2-16)))+x^(16/5)*_Z^4*exp(_C11)^16-68*x^(16/5)*_Z^2*exp(_C11)^16+256*x^(16/5)*exp(_C11)^16)-1/2*(1/4*(RootOf(-100*_Z^4*exp(arctanh(1/3*(5*_Z^2-32*_Z+80)/(_Z^2-16))+arctanh(1/3*(5*_Z^2+32*_Z+80)/(_Z^2-16)))+x^(16/5)*_Z^4*exp(_C11)^16-68*x^(16/5)*_Z^2*exp(_C11)^16+256*x^(16/5)*exp(_C11)^16)^2+16)^2/RootOf(-100*_Z^4*exp(arctanh(1/3*(5*_Z^2-32*_Z+80)/(_Z^2-16))+arctanh(1/3*(5*_Z^2+32*_Z+80)/(_Z^2-16)))+x^(16/5)*_Z^4*exp(_C11)^16-68*x^(16/5)*_Z^2*exp(_C11)^16+256*x^(16/5)*exp(_C11)^16)^2-16)^(1/2))*x:

try
    timelimit(60,simplify(e));
catch:
    print("OK, cought error");
end try;

 

(1/4)*(RootOf(-100*_Z^4*exp(arctanh((1/3)*(5*_Z^2-32*_Z+80)/(_Z^2-16))+arctanh((1/3)*(5*_Z^2+32*_Z+80)/(_Z^2-16)))+x^(16/5)*_Z^4*exp(16*_C11)-68*x^(16/5)*_Z^2*exp(16*_C11)+256*x^(16/5)*exp(16*_C11))^2-((RootOf(-100*_Z^4*exp(arctanh((1/3)*(5*_Z^2-32*_Z+80)/(_Z^2-16))+arctanh((1/3)*(5*_Z^2+32*_Z+80)/(_Z^2-16)))+x^(16/5)*_Z^4*exp(16*_C11)-68*x^(16/5)*_Z^2*exp(16*_C11)+256*x^(16/5)*exp(16*_C11))^2-16)^2/RootOf(-100*_Z^4*exp(arctanh((1/3)*(5*_Z^2-32*_Z+80)/(_Z^2-16))+arctanh((1/3)*(5*_Z^2+32*_Z+80)/(_Z^2-16)))+x^(16/5)*_Z^4*exp(16*_C11)-68*x^(16/5)*_Z^2*exp(16*_C11)+256*x^(16/5)*exp(16*_C11))^2)^(1/2)*RootOf(-100*_Z^4*exp(arctanh((1/3)*(5*_Z^2-32*_Z+80)/(_Z^2-16))+arctanh((1/3)*(5*_Z^2+32*_Z+80)/(_Z^2-16)))+x^(16/5)*_Z^4*exp(16*_C11)-68*x^(16/5)*_Z^2*exp(16*_C11)+256*x^(16/5)*exp(16*_C11))+16)*x/RootOf(-100*_Z^4*exp(arctanh((1/3)*(5*_Z^2-32*_Z+80)/(_Z^2-16))+arctanh((1/3)*(5*_Z^2+32*_Z+80)/(_Z^2-16)))+x^(16/5)*_Z^4*exp(16*_C11)-68*x^(16/5)*_Z^2*exp(16*_C11)+256*x^(16/5)*exp(16*_C11))

restart;

#12178
ode:=diff(y(x),x) = lambda*arctan(x)^n*y(x)^2+beta*m*x^(m-1)-lambda*beta^2*x^(2*m)*arctan(x)^n:
try
    timelimit(60,DEtools:-symgen(ode));
catch:
    print("OK, cought error");
end try;

"OK, cought error"

restart;

#12181
ode:=diff(x(y),y) = x(y)/(x(y)^(2*m)*arctan(x(y))^m*a*y^2+x(y)^n*arctan(x(y))^m*b*y+arctan(x(y))^m*c-n*y):
try
    r:=timelimit(60,DEtools:-symgen(ode));
catch:
    print("OK, cought error");
end try;

restart;

#12187
ode:=diff(y(x),x)=lambda*arccot(x)^n*y(x)^2+beta*m*x^(m-1)-lambda*beta^2*x^(2*m)*arccot(x)^n:
try
    r:=timelimit(60,DEtools:-symgen(ode));
catch:
    print("OK, cought error");
end try;

"OK, cought error"

restart;

#12190
ode:=diff(x(y),y) = x(y)/(x(y)^(2*m)*arccot(x(y))^m*a*y^2+x(y)^n*arccot(x(y))^m*b*y+arccot(x(y))^m*c-n*y):
try
    r:=timelimit(60,DEtools:-symgen(ode));
catch:
    print("OK, cought error");
end try;

"OK, cought error"

restart;

#10708
e:=2/(ln(x)-exp(1/x))*x*diff(diff(u(x),x),x)-(-2/(ln(x)-exp(1/x))^2*x*(1/x+1/x^2*exp(1/x))+2/(ln(x)-exp(1/x))+8*x^3/(ln(x)-exp(1/x))^2)*diff(u(x),x)-4/(ln(x)-exp(1/x))^3*x^2*(-2*x^3+ln(x)-exp(1/x)-2*x)*u(x):
e:=evala(e):
try
    timelimit(60,int(e,x));
catch:
    print("OK, cought error");
end try;

"OK, cought error"

restart;

#6764
e:=1/2/x^(7/2)*2^(1/2)*Pi^(1/2)/(1/x)^(1/2)*cos(1/x)*(1+x):
try
    r:=timelimit(60,int(e,x));
catch:
    print("OK, cought error");
end try;

"OK, cought error"

restart;

#19337

sol:=-y+Intat((_a*((_a^2+1)/_a^2)^(1/2)+_a^2+1)*exp(-1/2*(arctanh(1/(_a^2+1)^(1/2))*((_a^2+1)/_a^2)^(1/2)*_a^3+2*_C3*(_a^2+1)^(1/2)*_a^2+(_a^2+1)^(1/2)*((_a^2+1)/_a^2)^(1/2)*_a+(_a^2+1)^(1/2))/(_a^2+1)^(1/2)/_a^2)/((_a^2+1)/_a^2)^(1/2)/_a^5,_a = RootOf(x(y)-exp(-1/2*(arctanh(1/(_Z^2+1)^(1/2))*((_Z^2+1)/_Z^2)^(1/2)*_Z^3+2*_C3*(_Z^2+1)^(1/2)*_Z^2+(_Z^2+1)^(1/2)*((_Z^2+1)/_Z^2)^(1/2)*_Z+(_Z^2+1)^(1/2))/(_Z^2+1)^(1/2)/_Z^2)))+_C4 = 0:
ode:=-1/2/(diff(x(y),y)^2+1)^(1/2)*(diff(x(y),y)*(arctanh(1/(diff(x(y),y)^2+1)^(1/2))*diff(x(y),y)^2+(diff(x(y),y)^2+1)^(1/2))*((diff(x(y),y)^2+1)/diff(x(y),y)^2)^(1/2)+(diff(x(y),y)^2+1)^(1/2))/diff(x(y),y)^2 = ln(x(y))+_C3:
try
    r:=timelimit(60,odetest(sol,ode));
catch:
    print("OK, cought error");
end try;
 

-(1/2)*RootOf(x(y)-exp(-(1/2)*(arctanh(1/(_Z^2+1)^(1/2))*((_Z^2+1)/_Z^2)^(1/2)*_Z^3+2*c__3*(_Z^2+1)^(1/2)*_Z^2+(_Z^2+1)^(1/2)*((_Z^2+1)/_Z^2)^(1/2)*_Z+(_Z^2+1)^(1/2))/((_Z^2+1)^(1/2)*_Z^2)))*arctanh(1/(RootOf(x(y)-exp(-(1/2)*(arctanh(1/(_Z^2+1)^(1/2))*((_Z^2+1)/_Z^2)^(1/2)*_Z^3+2*c__3*(_Z^2+1)^(1/2)*_Z^2+(_Z^2+1)^(1/2)*((_Z^2+1)/_Z^2)^(1/2)*_Z+(_Z^2+1)^(1/2))/((_Z^2+1)^(1/2)*_Z^2)))^2+1)^(1/2))*(1+1/RootOf(x(y)-exp(-(1/2)*(arctanh(1/(_Z^2+1)^(1/2))*((_Z^2+1)/_Z^2)^(1/2)*_Z^3+2*c__3*(_Z^2+1)^(1/2)*_Z^2+(_Z^2+1)^(1/2)*((_Z^2+1)/_Z^2)^(1/2)*_Z+(_Z^2+1)^(1/2))/((_Z^2+1)^(1/2)*_Z^2)))^2)^(1/2)/(RootOf(x(y)-exp(-(1/2)*(arctanh(1/(_Z^2+1)^(1/2))*((_Z^2+1)/_Z^2)^(1/2)*_Z^3+2*c__3*(_Z^2+1)^(1/2)*_Z^2+(_Z^2+1)^(1/2)*((_Z^2+1)/_Z^2)^(1/2)*_Z+(_Z^2+1)^(1/2))/((_Z^2+1)^(1/2)*_Z^2)))^2+1)^(1/2)-ln(x(y))-c__3-(1/2)*(1+1/RootOf(x(y)-exp(-(1/2)*(arctanh(1/(_Z^2+1)^(1/2))*((_Z^2+1)/_Z^2)^(1/2)*_Z^3+2*c__3*(_Z^2+1)^(1/2)*_Z^2+(_Z^2+1)^(1/2)*((_Z^2+1)/_Z^2)^(1/2)*_Z+(_Z^2+1)^(1/2))/((_Z^2+1)^(1/2)*_Z^2)))^2)^(1/2)/RootOf(x(y)-exp(-(1/2)*(arctanh(1/(_Z^2+1)^(1/2))*((_Z^2+1)/_Z^2)^(1/2)*_Z^3+2*c__3*(_Z^2+1)^(1/2)*_Z^2+(_Z^2+1)^(1/2)*((_Z^2+1)/_Z^2)^(1/2)*_Z+(_Z^2+1)^(1/2))/((_Z^2+1)^(1/2)*_Z^2)))-(1/2)/RootOf(x(y)-exp(-(1/2)*(arctanh(1/(_Z^2+1)^(1/2))*((_Z^2+1)/_Z^2)^(1/2)*_Z^3+2*c__3*(_Z^2+1)^(1/2)*_Z^2+(_Z^2+1)^(1/2)*((_Z^2+1)/_Z^2)^(1/2)*_Z+(_Z^2+1)^(1/2))/((_Z^2+1)^(1/2)*_Z^2)))^2

Download collection_of_problems_maple_2024_version.mw

This looks like regression in dsolve.

In Maple 2024.2, dsolve solves this with no problem and very quickly. 

In Maple 2025 it just hangs.

Any one could find why this is the case? infolevel does not show why. Below is Maple 2024.2 worksheet and Maple 2025 worksheet.  This is Maple 2024.2 NO HANG

interface(version);

`Standard Worksheet Interface, Maple 2024.2, Windows 10, October 29 2024 Build ID 1872373`

ode:=diff(y(x),x)+((y(x)+1)*(y(x)-1)*(y(x)-2))/(x+1)=0;
IC:=y(1)=0;

diff(y(x), x)+(y(x)+1)*(y(x)-1)*(y(x)-2)/(x+1) = 0

y(1) = 0

DEtools:-odeadvisor(ode);

[_separable]

infolevel[dsolve]:=5;
dsolve([ode,IC])

5

 -> Computing symmetries using: way = 3

Methods for first order ODEs:

--- Trying classification methods ---

trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful

y(x) = RootOf(-2048+(x^6+6*x^5+15*x^4+20*x^3+15*x^2+6*x+257)*_Z^18+(-6*x^6-36*x^5-90*x^4-120*x^3-90*x^2-36*x-1542)*_Z^12+(9*x^6+54*x^5+135*x^4+180*x^3+135*x^2+54*x+3081)*_Z^6)^6-1

 

 

Download dsolve_2024_no_hang_april_20_2025.mw

This is Maple 2025. HANGed. Had to terminate it after 15 minutes. It seems to hang on resolving initial conditions. 

interface(version);

`Standard Worksheet Interface, Maple 2025.0, Linux, March 24 2025 Build ID 1909157`

ode:=diff(y(x),x)+((y(x)+1)*(y(x)-1)*(y(x)-2))/(x+1)=0;
IC:=y(1)=0;

diff(y(x), x)+(y(x)+1)*(y(x)-1)*(y(x)-2)/(x+1) = 0

y(1) = 0

DEtools:-odeadvisor(ode);

[_separable]

infolevel[dsolve]:=5;
dsolve([ode,IC])

5

 -> Computing symmetries using: way = 3

Methods for first order ODEs:

--- Trying classification methods ---

trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful

 

 

Download dsolve_2025_on_linux_hangs_april_20_2025.mw

First 16 17 18 19 20 21 22 Last Page 18 of 2426