MaplePrimes Questions

The installation / activation went without trouble. The problem occurs when I want to start Maple. The splash screen shows up with a blue loading bar and that's it. It just keeps loading, sometimes it gets to the end but nothing more. Taskmanager shows a CPU usage of +/- 15%. I searched the net for answers but I only found two similar situations. One was due to the java heap size and another one due to tcp/ip problems. I checked both but the problem still persists. I really need Maple for my courses and you guys are my last resort. I'm running it on win7 64bit and I tried both 32 and 64bit Maple.

input : a*b+a*c

output: (a+b)*(a+c)

convert sum of product to product of sum

how to find the homomorphism between prime ideal and space?

how to find the homomorphism between prime ideal and distributive lattice?

 

which homomorphism result in space if given prime ideal?

Hi, 

I'm trying to set up the dirac algebra using the Physics package in maple 18. There are dirac gamma matricies (Dgamma) already specified, but I can't seem to manipulate their commutation relations. 

So I've tried building my own: 

restart;
with(Physics);

Setup(noncommutativeprefix = {gamma});

g[1] := gamma[1]; g[2] := gamma[2]; g[3] := gamma[3]; g[4] := gamma[0];

InverseMetric := rhs(g_[`~mu`, `~nu`, matrix])

Algebra :=  (a, b) -> %AntiCommutator(g[a], g[b]) = 2*InverseMetric[a, b];

Rules := Matrix(4, 4, Algebra);

Setup(algebrarules = Rules);

Error, (in Physics:-Setup) unable to set AntiCommutator(gamma[0], gamma[1]) = 0 because, taking into account {AntiCommutator(gamma[0], gamma[0]) = 2}, we would have gamma[0] and gamma[0] anticommutative and AntiCommutator(gamma[0], gamma[0]) <> 0

It seems like Maple can't handle the Dirac Algebra? Or have I done something obviously wrong?

Any help is appreciated. 

Thanks

Find the smallest number N such that

π2/6 − Σ (from n=1 to N) 1/n< 0.001

using Maple commands.

Successively transform the expression x + y + z into x ∗ y ∗ z and [x, y, z], using Maple commands.

Hello,

I am going to model a statically balanced mechanism by using zero free length spring in MapleSim. In path Multibody> Force and Moments>, there is a Translational Spring and Damper which I can use, and I just enter zero length for spring unstreched length. In physical model, zero free length spring never get zero length because of the existing coils, but in MapleSim it reaches zero during simulation. Does anyone here know how can I model zero free length springs?

Thanks

How to find the coefficients of the terms diff(eta1(xi1),xi1)*diff(eta2(xi2),xi2)eta1(xi1)^2,...

how to save the session of maple worksheet so that no need to calculate again after restart computer

after calculated 70 million result for a long time, how to save the result and session so that no need to recalculate again?

Hi,

I use Maple on my laptop computer (windows 8.1) with a small screen. My problem is that the text in the menus, palettes, plots etc. are so small so I can´t read it. I have set Large toolbar icons under the menu tools-options-interface and I use the zoom buttom on the toolbar but this only magnify the text in a document. I also use the magnifying glass in windows, but I find it very inflexible. Is there any better solution to this problem?

Kind Regards

Leif Jonson

Hello

I have done this question again but i didnt get an answer.So does anyone know how i can substitute the following variables to an equation?I tried to create a list but i dont know how the variables can be substituted in the right place.data.docxdata.docxalfaeq.mw

Thanks

Contour lines must be ordinary circles. In fact, we get:

plots[contourplot](1/(x^2+y^2), x=-1..1, y=-1..1);

 

 

If we use the additional options, the result is even worse:

plots[contourplot](1/(x^2+y^2), x=-1..1,y=-1..1, numpoints=10000);

 

 

Hello i want to sort according to u derivatives (k) system.  And finding determining equations system and solving this system. Thank you very much.  

restart

with(PDEtools)

[CanonicalCoordinates, ChangeSymmetry, CharacteristicQ, CharacteristicQInvariants, ConservedCurrentTest, ConservedCurrents, ConsistencyTest, D_Dx, DeterminingPDE, Eta_k, Euler, FromJet, InfinitesimalGenerator, Infinitesimals, IntegratingFactorTest, IntegratingFactors, InvariantEquation, InvariantSolutions, InvariantTransformation, Invariants, Laplace, Library, PDEplot, PolynomialSolutions, ReducedForm, SimilaritySolutions, SimilarityTransformation, Solve, SymmetrySolutions, SymmetryTest, SymmetryTransformation, TWSolutions, ToJet, build, casesplit, charstrip, dchange, dcoeffs, declare, diff_table, difforder, dpolyform, dsubs, mapde, separability, splitstrip, splitsys, undeclare]

(1)

U := diff_table(u(x, y, t))

table( [(  ) = u(x, y, t) ] )

(2)

declare(U[])

u(x, y, t)*`will now be displayed as`*u

(3)

pde := diff(U[t]-(3/2)*U[x]-6*U[]^2*U[x]+U[x, x, x], x)+U[y, y] = 0

diff(diff(u(x, y, t), t), x)-(3/2)*(diff(diff(u(x, y, t), x), x))-12*u(x, y, t)*(diff(u(x, y, t), x))^2-6*u(x, y, t)^2*(diff(diff(u(x, y, t), x), x))+diff(diff(diff(diff(u(x, y, t), x), x), x), x)+diff(diff(u(x, y, t), y), y) = 0

(4)

NULL

w := phi(x, y, t, U[])

phi(x, y, t, u(x, y, t))

(5)

w*(-12*U[x]^2-12*U[]*U[x, x])+12*w*U[x]^2+12*U[]*w*U[x, x]+(diff(w, x, x))*(-3/2-6*U[]^2)+diff(diff(w, t), x)+diff(w, y, y)+diff(w, x, x, x, x)-lambda*(diff(U[t]-(3/2)*U[x]-6*U[]^2*U[x]+U[x, x, x], x)+U[y, y])

-lambda*(diff(diff(u(x, y, t), t), x)-(3/2)*(diff(diff(u(x, y, t), x), x))-12*u(x, y, t)*(diff(u(x, y, t), x))^2-6*u(x, y, t)^2*(diff(diff(u(x, y, t), x), x))+diff(diff(diff(diff(u(x, y, t), x), x), x), x)+diff(diff(u(x, y, t), y), y))+(D[1, 1, 1, 1](phi))(x, y, t, u(x, y, t))+(D[1, 1, 1, 4](phi))(x, y, t, u(x, y, t))*(diff(u(x, y, t), x))+((D[1, 1, 1, 4](phi))(x, y, t, u(x, y, t))+(D[1, 1, 4, 4](phi))(x, y, t, u(x, y, t))*(diff(u(x, y, t), x)))*(diff(u(x, y, t), x))+(D[1, 1, 4](phi))(x, y, t, u(x, y, t))*(diff(diff(u(x, y, t), x), x))+((D[1, 1, 1, 4](phi))(x, y, t, u(x, y, t))+(D[1, 1, 4, 4](phi))(x, y, t, u(x, y, t))*(diff(u(x, y, t), x))+((D[1, 1, 4, 4](phi))(x, y, t, u(x, y, t))+(D[1, 4, 4, 4](phi))(x, y, t, u(x, y, t))*(diff(u(x, y, t), x)))*(diff(u(x, y, t), x))+(D[1, 4, 4](phi))(x, y, t, u(x, y, t))*(diff(diff(u(x, y, t), x), x)))*(diff(u(x, y, t), x))+2*((D[1, 1, 4](phi))(x, y, t, u(x, y, t))+(D[1, 4, 4](phi))(x, y, t, u(x, y, t))*(diff(u(x, y, t), x)))*(diff(diff(u(x, y, t), x), x))+(D[1, 4](phi))(x, y, t, u(x, y, t))*(diff(diff(diff(u(x, y, t), x), x), x))+((D[1, 1, 1, 4](phi))(x, y, t, u(x, y, t))+(D[1, 1, 4, 4](phi))(x, y, t, u(x, y, t))*(diff(u(x, y, t), x))+((D[1, 1, 4, 4](phi))(x, y, t, u(x, y, t))+(D[1, 4, 4, 4](phi))(x, y, t, u(x, y, t))*(diff(u(x, y, t), x)))*(diff(u(x, y, t), x))+(D[1, 4, 4](phi))(x, y, t, u(x, y, t))*(diff(diff(u(x, y, t), x), x))+((D[1, 1, 4, 4](phi))(x, y, t, u(x, y, t))+(D[1, 4, 4, 4](phi))(x, y, t, u(x, y, t))*(diff(u(x, y, t), x))+((D[1, 4, 4, 4](phi))(x, y, t, u(x, y, t))+(D[4, 4, 4, 4](phi))(x, y, t, u(x, y, t))*(diff(u(x, y, t), x)))*(diff(u(x, y, t), x))+(D[4, 4, 4](phi))(x, y, t, u(x, y, t))*(diff(diff(u(x, y, t), x), x)))*(diff(u(x, y, t), x))+2*((D[1, 4, 4](phi))(x, y, t, u(x, y, t))+(D[4, 4, 4](phi))(x, y, t, u(x, y, t))*(diff(u(x, y, t), x)))*(diff(diff(u(x, y, t), x), x))+(D[4, 4](phi))(x, y, t, u(x, y, t))*(diff(diff(diff(u(x, y, t), x), x), x)))*(diff(u(x, y, t), x))+3*((D[1, 1, 4](phi))(x, y, t, u(x, y, t))+(D[1, 4, 4](phi))(x, y, t, u(x, y, t))*(diff(u(x, y, t), x))+((D[1, 4, 4](phi))(x, y, t, u(x, y, t))+(D[4, 4, 4](phi))(x, y, t, u(x, y, t))*(diff(u(x, y, t), x)))*(diff(u(x, y, t), x))+(D[4, 4](phi))(x, y, t, u(x, y, t))*(diff(diff(u(x, y, t), x), x)))*(diff(diff(u(x, y, t), x), x))+3*((D[1, 4](phi))(x, y, t, u(x, y, t))+(D[4, 4](phi))(x, y, t, u(x, y, t))*(diff(u(x, y, t), x)))*(diff(diff(diff(u(x, y, t), x), x), x))+(D[4](phi))(x, y, t, u(x, y, t))*(diff(diff(diff(diff(u(x, y, t), x), x), x), x))+(D[2, 2](phi))(x, y, t, u(x, y, t))+(D[2, 4](phi))(x, y, t, u(x, y, t))*(diff(u(x, y, t), y))+((D[2, 4](phi))(x, y, t, u(x, y, t))+(D[4, 4](phi))(x, y, t, u(x, y, t))*(diff(u(x, y, t), y)))*(diff(u(x, y, t), y))+(D[4](phi))(x, y, t, u(x, y, t))*(diff(diff(u(x, y, t), y), y))+(D[1, 3](phi))(x, y, t, u(x, y, t))+(D[3, 4](phi))(x, y, t, u(x, y, t))*(diff(u(x, y, t), x))+((D[1, 4](phi))(x, y, t, u(x, y, t))+(D[4, 4](phi))(x, y, t, u(x, y, t))*(diff(u(x, y, t), x)))*(diff(u(x, y, t), t))+(D[4](phi))(x, y, t, u(x, y, t))*(diff(diff(u(x, y, t), t), x))+((D[1, 1](phi))(x, y, t, u(x, y, t))+(D[1, 4](phi))(x, y, t, u(x, y, t))*(diff(u(x, y, t), x))+((D[1, 4](phi))(x, y, t, u(x, y, t))+(D[4, 4](phi))(x, y, t, u(x, y, t))*(diff(u(x, y, t), x)))*(diff(u(x, y, t), x))+(D[4](phi))(x, y, t, u(x, y, t))*(diff(diff(u(x, y, t), x), x)))*(-3/2-6*u(x, y, t)^2)+12*u(x, y, t)*phi(x, y, t, u(x, y, t))*(diff(diff(u(x, y, t), x), x))+12*phi(x, y, t, u(x, y, t))*(diff(u(x, y, t), x))^2+phi(x, y, t, u(x, y, t))*(-12*(diff(u(x, y, t), x))^2-12*u(x, y, t)*(diff(diff(u(x, y, t), x), x)))

(6)

k := simplify(%)

-(3/2)*(D[1, 1](phi))(x, y, t, u(x, y, t))+(D[1, 3](phi))(x, y, t, u(x, y, t))+(D[2, 2](phi))(x, y, t, u(x, y, t))+(D[1, 1, 1, 1](phi))(x, y, t, u(x, y, t))+4*(D[1, 1, 1, 4](phi))(x, y, t, u(x, y, t))*(D[1](u))(x, y, t)+6*(D[1, 1, 4](phi))(x, y, t, u(x, y, t))*(D[1, 1](u))(x, y, t)+4*(D[1, 4](phi))(x, y, t, u(x, y, t))*(D[1, 1, 1](u))(x, y, t)+(D[4](phi))(x, y, t, u(x, y, t))*(D[1, 1, 1, 1](u))(x, y, t)+2*(D[2, 4](phi))(x, y, t, u(x, y, t))*(D[2](u))(x, y, t)+(D[4](phi))(x, y, t, u(x, y, t))*(D[2, 2](u))(x, y, t)+(D[3, 4](phi))(x, y, t, u(x, y, t))*(D[1](u))(x, y, t)+(D[4](phi))(x, y, t, u(x, y, t))*(D[1, 3](u))(x, y, t)-3*(D[1, 4](phi))(x, y, t, u(x, y, t))*(D[1](u))(x, y, t)-(3/2)*(D[4](phi))(x, y, t, u(x, y, t))*(D[1, 1](u))(x, y, t)-lambda*(D[1, 3](u))(x, y, t)+(3/2)*lambda*(D[1, 1](u))(x, y, t)-lambda*(D[1, 1, 1, 1](u))(x, y, t)-lambda*(D[2, 2](u))(x, y, t)+6*(D[1, 1, 4, 4](phi))(x, y, t, u(x, y, t))*(D[1](u))(x, y, t)^2+4*(D[1, 4, 4, 4](phi))(x, y, t, u(x, y, t))*(D[1](u))(x, y, t)^3+(D[4, 4, 4, 4](phi))(x, y, t, u(x, y, t))*(D[1](u))(x, y, t)^4+3*(D[4, 4](phi))(x, y, t, u(x, y, t))*(D[1, 1](u))(x, y, t)^2+(D[4, 4](phi))(x, y, t, u(x, y, t))*(D[2](u))(x, y, t)^2+(D[3](u))(x, y, t)*(D[1, 4](phi))(x, y, t, u(x, y, t))-(3/2)*(D[4, 4](phi))(x, y, t, u(x, y, t))*(D[1](u))(x, y, t)^2-6*(D[1, 1](phi))(x, y, t, u(x, y, t))*u(x, y, t)^2+12*lambda*u(x, y, t)*(D[1](u))(x, y, t)^2+6*lambda*u(x, y, t)^2*(D[1, 1](u))(x, y, t)+12*(D[1](u))(x, y, t)*(D[1, 4, 4](phi))(x, y, t, u(x, y, t))*(D[1, 1](u))(x, y, t)+6*(D[1](u))(x, y, t)^2*(D[4, 4, 4](phi))(x, y, t, u(x, y, t))*(D[1, 1](u))(x, y, t)+4*(D[1](u))(x, y, t)*(D[4, 4](phi))(x, y, t, u(x, y, t))*(D[1, 1, 1](u))(x, y, t)+(D[3](u))(x, y, t)*(D[4, 4](phi))(x, y, t, u(x, y, t))*(D[1](u))(x, y, t)-12*(D[1, 4](phi))(x, y, t, u(x, y, t))*(D[1](u))(x, y, t)*u(x, y, t)^2-6*(D[4, 4](phi))(x, y, t, u(x, y, t))*(D[1](u))(x, y, t)^2*u(x, y, t)^2-6*(D[4](phi))(x, y, t, u(x, y, t))*(D[1, 1](u))(x, y, t)*u(x, y, t)^2

(7)

frontend(coeff, [k, U[x]^2]);

0

(8)

frontend(coeff, [k, U[x]*U[x, x]])

Error, invalid input: coeff received O*O, which is not valid for its 2nd argument, x

 

NULL


Download det.eq..mw

 

I am not sure I know what is going on. I expected to obtain the controllable canonical form in this example, but I am not. May be I am not using it correctly. 

Given A,B, I wanted to transfer the state space to controllable canonical form

http://www.maplesoft.com/support/help/Maple/view.aspx?path=DynamicSystems%2FSSTransformation

In this form, the A matrix will have 1 on the super diagonal, and the last row will have the coefficients of the charaterestic polynomial in reverse order with a minus sign. The B matrix will have all zeros, except for the last entry.  This is what the example on the above page actually shows. 

But when I tried it on my A,B, I do not get this form for the new B matrix. Here is a MWE

restart;
with(DynamicSystems):
A:=Matrix([[0,0,1,0],[0,0,0,1],[-2,-1,0,0],[1,-1,0,0]]);
B:=Matrix([[0],[0],[1],[0]]);
C:=Matrix([[0,0,0,0]]):
D0:=Matrix([[0]]):
sys:=StateSpace(A,B,C,D0): #just to see the polynomial
CharacteristicPolynomial(sys, s);


SSTransformation(A,B,C,D0,form=ControlCanon,output=['A','B']);

The above should be

I am sure I am doing something wrong, but what?

Maple 18.01, windows 7

 

 

Below is the function that I have.

 

f := (t-1)^(1/3)

p:=2;

b[n] := 2/p*(Int(f*sin(2*Pi*n*t/p), t = 0 .. p))

 

I also included a picture below to show what it is doing. Some help would be greatly appreciated. All I need to know is why maple doesn't want to evaluate bn?

 

Maple Code

 

First 1370 1371 1372 1373 1374 1375 1376 Last Page 1372 of 2428