MaplePrimes Questions

Hello,

It is not a very important question... but i like when i have a nice worksheet.

I would like to change the color of the maple input. Unfortunately, i manage to change the color for the inputs already created but not for the new maple input.

How can i change the color for the new maple input i want to create ?

Thank you for your help.

I saw the expression:

proc(a::array(1, mumeric))

the decration of a is array(a, numeric).

But, I can't find still now the expression of array(a, numeric) in HELP in maple.

In the term of array, it is written that it takes as arguments indexfcn, bounds, list.

as in  array( indexfcn, bounds, list).

1 in array(1, mumeric)) is bounds, and probably numeric in array might mean each terms of the array such as (1,2,3)

has to take the property of being numeric. But, it is not written in the term of array in the HELP of Maple.

Where can I find that syntax of array of array(1, numeric)?

 

Thanks in advance.

 

taro 

 

 

 

 

How can I solve raychaudhuri equations numerically using GRtensor?

Hi guys, i'm a student from France, so excuse  me in advance for my english.

 

I'm currently struggling to solve a partial differential equation :


where E,I,Fv,p,S0,L are constants.

 

When i ask Maple to solve it, here's its answer

 

But how can i use this solution ? May I use a different method ? Any suggestion ?


here's the code :
[code]E := (1/2)*Fv*(L-y)^2+EI*(diff(x(y, t), `$`(y, 2))) = -(1/12)*p*S0*(diff(x(y, t), t, t))*(L-y)^4/L^2;[/code]

to get the solution type the following code :

[code]pdsolve(E);[/code]

any advice would be appreciated

Thank you for your concern.

 

g := (-12*y^2+1)/(4*y^2+1)^3 * ln(abs(-1+2^(1-x-I*y)));

Compute Int(g, [x=1/2 .. infinity, y=0 .. infinity]).

PS: this stems from How to calculate hard integral?,
but it is not related to the RH.

My problem is i am working with a very large randomly generated output, generated using maple's builtin in random generating functions. I have the output which i want to investigate but i want to be able to reproduce this result when i save and close the worksheet. Since the list of generators is very long copy pasting is not very nice and i donot know the seed of these generaters. I want to ask if i can store the values in variable in the worksheet so that when i open the worksheet i can get the same random generates stored in the variable.

Dear All

 

I have a question about applying fsolve in MAPLE.

These codes come from an applicable model from heat transfer.

I previously solve such systems, but the fsolve takes long time, for example for N=2, I have 12 equations with 12 unknowns. But the fsolve does not work!

I try by N=3 or N=4, but a similar result has been obtained.

 

If kindly is possible, please give me a help for using fsolve more efficiently that solve my problem.

I have MAPLE 13 in my PC.

 

With kind regards,

Emran Tohidi.

 

> restart;
> with(orthopoly);
print(`output redirected...`); # input placeholder
> Digits := 20;
> N := 3; f := proc (x) options operator, arrow; cos(Pi*(x-1/2)) end proc; h1 := proc (t) options operator, arrow; 0 end proc; h2 := proc (t) options operator, arrow; 0 end proc; E := proc (t) options operator, arrow; cos(.2*Pi)*exp(-t^2) end proc;
print(`output redirected...`); # input placeholder
> u := sum(sum(b[m, n]*P(m, 2*x-1)*P(n, 2*t-1), m = 0 .. N), n = 0 .. N);
print(`output redirected...`); # input placeholder
> u := unapply(u, x, t);
print(`output redirected...`); # input placeholder
> ut := diff(u(x, t), `$`(t, 1)); ut := unapply(ut, x, t);
print(`output redirected...`); # input placeholder
> uxx := diff(u(x, t), `$`(x, 2)); uxx := unapply(uxx, x, t);
print(`output redirected...`); # input placeholder
> a := sum(c[m]*P(m, 2*t-1), m = 0 .. N); a := unapply(a, t);
print(`output redirected...`); # input placeholder
> A := fsolve(P(N+1, 2*x-1) = 0);
print(`output redirected...`); # input placeholder
> S1 := {seq(seq(ut(A[i], A[j])-a(A[j])*uxx(A[i], A[j]) = 0, i = 2 .. N), j = 2 .. N+1)}; S2 := {seq(u(A[i], 0)-f(A[i]) = 0, i = 2 .. N)}; S3 := {seq(u(0, A[j])-h1(A[j]) = 0, j = 1 .. N+1)}; S4 := {seq(u(1, A[j])-h2(A[j]) = 0, j = 1 .. N+1)}; S5 := {seq(u(.3, A[j])-E(A[j]) = 0, j = 1 .. N+1)}; S := `union`(`union`(`union`(`union`(S1, S2), S3), S4), S5);
print(`output redirected...`); # input placeholder
> sol := fsolve(S);



Hi. I want to generate a Julia set, and teh first instruction in the demo, applications fractal is

GenerateComplex(a,b,c,d,e)

I have Maple13 and I can not find such instruction. Could you tell me where can I get it, or how to define it?

 

Thanks

I want to do a step by step computation for obtaining the coefficents of the sine fourier series expansion of f(x)=x over the interval [-L,L]. The steps are as follows:

1-write the fourier expansion as: Sum(A[n]*sin(n*pi*x/L),n=1..N)
2-multiply the series by: sin(m*pi*x/L)
3-integrate the series over the interval [-L,L]
3-using the orthogonality properties of the set {sin(n*pi*x/L} compute the A[n].

I can't do these steps since I have problem with the series manipulations in maple!
Can any one suggest a way from begining to the end?

Thanks. :)
Below shows what I did in Maple 17.

Help Please! :)
As it is seen in the picture, I can not integrate the power series. In contrast, the differentiation works!
what is wrong?

Dear people in Mapleprimes,

I calculated the following Quick Sort algorithm.

 

restart;
quicksort:=proc(A::array(1,numeric),
m::integer, n::integer) 
local partition, p;

partition:=proc(m,n)
i:=m;
j:=n;
x:=A[j];
while i<j do
if A[i]>x then
A[j]:=A[i];
j:=j-1;
A[i]:=A[j];
else
i:=i+1;
end if;
end do;
A[j]:=x;
p:=j;

end proc:

if m<n then
p:=partition(m,n);
quicksort(A,m,p-1);
quicksort(A,p+1,n);
end if;
eval(A);
end proc:

trace(quicksort);

a:=array([2,4,1,5,3]);

quicksort(a,1,5);

 

Then, in the answer, there was a sentence that

{--> enter , quicksort, , args = , a, , , 2, , , 2

........................

{--> enter , quicksort, , args = , a, , , 4, , , 5

I could understand the reason of the "{--> enter , quicksort, , args = , a, , , 2, , , 2," 

but, I could not understand why 4, , , 5 could appear here. I think there is no reason why n that is the number at 5 

increased from 2 to 5. I thought n continues to be 2.

I hope you will give me some hint for this understanding.

 

I thought it with a lot of time. And, I don't know whether this place is an appropriate place to ask this question.

But, I will be very glad if you teach me some of this.

 

Best wishes.

 

taro

 

 

 

 

 


psif := (0.5731939284e-1*(x-97.79105004))/((x-97.79105004)^2+(y+.3750470777)^2)+(0.2599707238e-1*(y+.3750470777))/((x-97.79105004)^2+(y+.3750470777)^2)+(0.7176288278e-1*x-7.025711349)/((x-97.90174359)^2+(y-.8198365723)^2)+(-0.6648084910e-2*y+0.5450343145e-2)/((x-97.90174359)^2+(y-.8198365723)^2)+(0.6378426459e-1*x-6.295510046)/((x-98.70004908)^2+(y-1.715776493)^2)+(-0.5683341879e-1*y+0.9751344398e-1)/((x-98.70004908)^2+(y-1.715776493)^2)+(0.6500592479e-2*x-.6493949981)/((x-99.89781703)^2+(y-1.788933400)^2)+(-.1064315267*y+.1903989129)/((x-99.89781703)^2+(y-1.788933400)^2)+(-.1026176004*x+10.33830579)/((x-100.7459320)^2+(y-.9399922915)^2)+(-.1025177385*y+0.9636588393e-1)/((x-100.7459320)^2+(y-.9399922915)^2)+(-.1841914880*x+18.41914880)/((x-100.)^2+y^2)+.1461653667*y/((x-100.)^2+y^2)+3.*y-11.93662073*ln((x-100.)^2+y^2):

xf := 98.17642962:

ode := diff(X(t), t) = evalf(subs(x = X(t), y = Y(t), subs(vvx = Vx, vvx))), diff(Y(t), t) = evalf(subs(x = X(t), y = Y(t), subs(vvy = Vy, vvy))), diff(S(t), t) = -Y(t)*evalf(subs(x = X(t), y = Y(t), subs(vvx = Vx, vvx))):

ds := dsolve(odse, type = numeric, method = rkf45, maxfun = 0, output = listprocedure, abserr = .1^10, relerr = .1^10, minstep = .1^10);

proc (t) local _res, _dat, _solnproc, _xout, _ndsol, _pars, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if 1 < nargs then error "invalid input: too many arguments" end if; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then _xout := evalf[_EnvDSNumericSaveDigits](t) else _xout := evalf(t) end if; _dat := Array(1..4, {(1) = proc (_xin) local _xout, _dtbl, _dat, _vmap, _x0, _y0, _val, _dig, _n, _ne, _nd, _nv, _pars, _ini, _par, _i, _j, _k, _src; option `Copyright (c) 2002 by Waterloo Maple Inc. All rights reserved.`; table( [( "complex" ) = false ] ) _xout := _xin; _pars := []; _dtbl := array( 1 .. 4, [( 1 ) = (array( 1 .. 20, [( 1 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 2 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 3 ) = ([0, 0, 0, Array(1..0, 1..2, {}, datatype = float[8], order = C_order)]), ( 4 ) = (Array(1..53, {(1) = 3, (2) = 3, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 1, (8) = 0, (9) = 0, (10) = 0, (11) = 0, (12) = 0, (13) = 0, (14) = 0, (15) = 0, (16) = 0, (17) = 0, (18) = 1, (19) = 0, (20) = 0, (21) = 0, (22) = 1, (23) = 4, (24) = 0, (25) = 1, (26) = 15, (27) = 1, (28) = 0, (29) = 1, (30) = 3, (31) = 3, (32) = 0, (33) = 1, (34) = 0, (35) = 0, (36) = 0, (37) = 0, (38) = 0, (39) = 0, (40) = 0, (41) = 0, (42) = 0, (43) = 1, (44) = 0, (45) = 0, (46) = 0, (47) = 0, (48) = 0, (49) = 0, (50) = 50, (51) = 1, (52) = 0, (53) = 0}, datatype = integer[8])), ( 5 ) = (Array(1..28, {(1) = .0, (2) = 0.10e-9, (3) = .0, (4) = 0.500001e-14, (5) = .0, (6) = 0.5313975432658623e-3, (7) = .0, (8) = 0.10e-9, (9) = .0, (10) = .0, (11) = 0.10e-9, (12) = .0, (13) = 1.0, (14) = .0, (15) = .49999999999999, (16) = .0, (17) = 1.0, (18) = 1.0, (19) = .0, (20) = .0, (21) = 1.0, (22) = 1.0, (23) = .0, (24) = .0, (25) = 0.10e-14, (26) = .0, (27) = .0, (28) = .0}, datatype = float[8], order = C_order)), ( 6 ) = (Array(1..3, {(1) = .0, (2) = 98.17642962, (3) = -1.578177289}, datatype = float[8], order = C_order)), ( 7 ) = ([Array(1..4, 1..7, {(1, 1) = .0, (1, 2) = .203125, (1, 3) = .3046875, (1, 4) = .75, (1, 5) = .8125, (1, 6) = .40625, (1, 7) = .8125, (2, 1) = 0.6378173828125e-1, (2, 2) = .0, (2, 3) = .279296875, (2, 4) = .27237892150878906, (2, 5) = -0.9686851501464844e-1, (2, 6) = 0.1956939697265625e-1, (2, 7) = .5381584167480469, (3, 1) = 0.31890869140625e-1, (3, 2) = .0, (3, 3) = -.34375, (3, 4) = -.335235595703125, (3, 5) = .2296142578125, (3, 6) = .41748046875, (3, 7) = 11.480712890625, (4, 1) = 0.9710520505905151e-1, (4, 2) = .0, (4, 3) = .40350341796875, (4, 4) = 0.20297467708587646e-1, (4, 5) = -0.6054282188415527e-2, (4, 6) = -0.4770040512084961e-1, (4, 7) = .77858567237854}, datatype = float[8], order = C_order), Array(1..6, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = 1.0, (2, 1) = .25, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = 1.0, (3, 1) = .1875, (3, 2) = .5625, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = 2.0, (4, 1) = .23583984375, (4, 2) = -.87890625, (4, 3) = .890625, (4, 4) = .0, (4, 5) = .0, (4, 6) = .2681884765625, (5, 1) = .1272735595703125, (5, 2) = -.5009765625, (5, 3) = .44921875, (5, 4) = -0.128936767578125e-1, (5, 5) = .0, (5, 6) = 0.626220703125e-1, (6, 1) = -0.927734375e-1, (6, 2) = .626220703125, (6, 3) = -.4326171875, (6, 4) = .1418304443359375, (6, 5) = -0.861053466796875e-1, (6, 6) = .3131103515625}, datatype = float[8], order = C_order), Array(1..6, {(1) = .0, (2) = .386, (3) = .21, (4) = .63, (5) = 1.0, (6) = 1.0}, datatype = float[8], order = C_order), Array(1..6, {(1) = .25, (2) = -.1043, (3) = .1035, (4) = -0.362e-1, (5) = .0, (6) = .0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 1.544, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = .9466785280815533, (3, 2) = .25570116989825814, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = 3.3148251870684886, (4, 2) = 2.896124015972123, (4, 3) = .9986419139977808, (4, 4) = .0, (4, 5) = .0, (5, 1) = 1.2212245092262748, (5, 2) = 6.019134481287752, (5, 3) = 12.537083329320874, (5, 4) = -.687886036105895, (5, 5) = .0, (6, 1) = 1.2212245092262748, (6, 2) = 6.019134481287752, (6, 3) = 12.537083329320874, (6, 4) = -.687886036105895, (6, 5) = 1.0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = -5.6688, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = -2.4300933568337584, (3, 2) = -.20635991570891224, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = -.10735290581452621, (4, 2) = -9.594562251021896, (4, 3) = -20.470286148096154, (4, 4) = .0, (4, 5) = .0, (5, 1) = 7.496443313968615, (5, 2) = -10.246804314641219, (5, 3) = -33.99990352819906, (5, 4) = 11.708908932061595, (5, 5) = .0, (6, 1) = 8.083246795922411, (6, 2) = -7.981132988062785, (6, 3) = -31.52159432874373, (6, 4) = 16.319305431231363, (6, 5) = -6.0588182388340535}, datatype = float[8], order = C_order), Array(1..3, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 10.126235083446911, (2, 2) = -7.487995877607633, (2, 3) = -34.800918615557414, (2, 4) = -7.9927717075687275, (2, 5) = 1.0251377232956207, (3, 1) = -.6762803392806898, (3, 2) = 6.087714651678606, (3, 3) = 16.43084320892463, (3, 4) = 24.767225114183653, (3, 5) = -6.5943891257167815}, datatype = float[8], order = C_order)]), ( 9 ) = ([Array(1..3, {(1) = 1.0, (2) = 1.0, (3) = 1.0}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, 1..3, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0}, datatype = float[8], order = C_order), Array(1..3, 1..3, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0}, datatype = float[8], order = C_order), Array(1..3, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = 0, (2) = 0, (3) = 0}, datatype = integer[8]), Array(1..3, {(1) = .0, (2) = 98.17642962, (3) = -1.578177289}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order)]), ( 8 ) = ([Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = 15.054642426145987, (2) = 9.539259328516408, (3) = -7.5367596882075505}, datatype = float[8], order = C_order)]), ( 11 ) = (Array(1..6, 0..3, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (2, 0) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (3, 0) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (4, 0) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (5, 0) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (6, 0) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0}, datatype = float[8], order = C_order)), ( 10 ) = ([proc (N, X, Y, YP) option `[Y[1] = S(t), Y[2] = X(t), Y[3] = Y(t)]`; YP[1] := -Y[3]*(-0.5731939284e-1*(Y[2]-97.79105004)*(2.*Y[3]+.7500941554)/((Y[2]-97.79105004)^2+(Y[3]+.3750470777)^2)^2+0.2599707238e-1/((Y[2]-97.79105004)^2+(Y[3]+.3750470777)^2)-0.2599707238e-1*(Y[3]+.3750470777)*(2.*Y[3]+.7500941554)/((Y[2]-97.79105004)^2+(Y[3]+.3750470777)^2)^2-1.*(0.7176288278e-1*Y[2]-7.025711349)*(2.*Y[3]-1.639673145)/((Y[2]-97.90174359)^2+(Y[3]-.8198365723)^2)^2-0.6648084910e-2/((Y[2]-97.90174359)^2+(Y[3]-.8198365723)^2)-1.*(-0.6648084910e-2*Y[3]+0.5450343145e-2)*(2.*Y[3]-1.639673145)/((Y[2]-97.90174359)^2+(Y[3]-.8198365723)^2)^2-1.*(0.6378426459e-1*Y[2]-6.295510046)*(2.*Y[3]-3.431552986)/((Y[2]-98.70004908)^2+(Y[3]-1.715776493)^2)^2-0.5683341879e-1/((Y[2]-98.70004908)^2+(Y[3]-1.715776493)^2)-1.*(-0.5683341879e-1*Y[3]+0.9751344398e-1)*(2.*Y[3]-3.431552986)/((Y[2]-98.70004908)^2+(Y[3]-1.715776493)^2)^2-1.*(0.6500592479e-2*Y[2]-.6493949981)*(2.*Y[3]-3.577866800)/((Y[2]-99.89781703)^2+(Y[3]-1.788933400)^2)^2-.1064315267/((Y[2]-99.89781703)^2+(Y[3]-1.788933400)^2)-1.*(-.1064315267*Y[3]+.1903989129)*(2.*Y[3]-3.577866800)/((Y[2]-99.89781703)^2+(Y[3]-1.788933400)^2)^2-1.*(-.1026176004*Y[2]+10.33830579)*(2.*Y[3]-1.879984583)/((Y[2]-100.7459320)^2+(Y[3]-.9399922915)^2)^2-.1025177385/((Y[2]-100.7459320)^2+(Y[3]-.9399922915)^2)-1.*(-.1025177385*Y[3]+0.9636588393e-1)*(2.*Y[3]-1.879984583)/((Y[2]-100.7459320)^2+(Y[3]-.9399922915)^2)^2-2.*(-.1841914880*Y[2]+18.41914880)*Y[3]/((Y[2]-100.)^2+Y[3]^2)^2+.1461653667/((Y[2]-100.)^2+Y[3]^2)-.2923307334*Y[3]^2/((Y[2]-100.)^2+Y[3]^2)^2+3.-23.87324146*Y[3]/((Y[2]-100.)^2+Y[3]^2)); YP[2] := -0.5731939284e-1*(Y[2]-97.79105004)*(2.*Y[3]+.7500941554)/((Y[2]-97.79105004)^2+(Y[3]+.3750470777)^2)^2+0.2599707238e-1/((Y[2]-97.79105004)^2+(Y[3]+.3750470777)^2)-0.2599707238e-1*(Y[3]+.3750470777)*(2.*Y[3]+.7500941554)/((Y[2]-97.79105004)^2+(Y[3]+.3750470777)^2)^2-1.*(0.7176288278e-1*Y[2]-7.025711349)*(2.*Y[3]-1.639673145)/((Y[2]-97.90174359)^2+(Y[3]-.8198365723)^2)^2-0.6648084910e-2/((Y[2]-97.90174359)^2+(Y[3]-.8198365723)^2)-1.*(-0.6648084910e-2*Y[3]+0.5450343145e-2)*(2.*Y[3]-1.639673145)/((Y[2]-97.90174359)^2+(Y[3]-.8198365723)^2)^2-1.*(0.6378426459e-1*Y[2]-6.295510046)*(2.*Y[3]-3.431552986)/((Y[2]-98.70004908)^2+(Y[3]-1.715776493)^2)^2-0.5683341879e-1/((Y[2]-98.70004908)^2+(Y[3]-1.715776493)^2)-1.*(-0.5683341879e-1*Y[3]+0.9751344398e-1)*(2.*Y[3]-3.431552986)/((Y[2]-98.70004908)^2+(Y[3]-1.715776493)^2)^2-1.*(0.6500592479e-2*Y[2]-.6493949981)*(2.*Y[3]-3.577866800)/((Y[2]-99.89781703)^2+(Y[3]-1.788933400)^2)^2-.1064315267/((Y[2]-99.89781703)^2+(Y[3]-1.788933400)^2)-1.*(-.1064315267*Y[3]+.1903989129)*(2.*Y[3]-3.577866800)/((Y[2]-99.89781703)^2+(Y[3]-1.788933400)^2)^2-1.*(-.1026176004*Y[2]+10.33830579)*(2.*Y[3]-1.879984583)/((Y[2]-100.7459320)^2+(Y[3]-.9399922915)^2)^2-.1025177385/((Y[2]-100.7459320)^2+(Y[3]-.9399922915)^2)-1.*(-.1025177385*Y[3]+0.9636588393e-1)*(2.*Y[3]-1.879984583)/((Y[2]-100.7459320)^2+(Y[3]-.9399922915)^2)^2-2.*(-.1841914880*Y[2]+18.41914880)*Y[3]/((Y[2]-100.)^2+Y[3]^2)^2+.1461653667/((Y[2]-100.)^2+Y[3]^2)-.2923307334*Y[3]^2/((Y[2]-100.)^2+Y[3]^2)^2+3.-23.87324146*Y[3]/((Y[2]-100.)^2+Y[3]^2); YP[3] := -0.5731939284e-1/((Y[2]-97.79105004)^2+(Y[3]+.3750470777)^2)+0.5731939284e-1*(Y[2]-97.79105004)*(2.*Y[2]-195.5821001)/((Y[2]-97.79105004)^2+(Y[3]+.3750470777)^2)^2+0.2599707238e-1*(Y[3]+.3750470777)*(2.*Y[2]-195.5821001)/((Y[2]-97.79105004)^2+(Y[3]+.3750470777)^2)^2-0.7176288278e-1/((Y[2]-97.90174359)^2+(Y[3]-.8198365723)^2)+(0.7176288278e-1*Y[2]-7.025711349)*(2.*Y[2]-195.8034872)/((Y[2]-97.90174359)^2+(Y[3]-.8198365723)^2)^2+(-0.6648084910e-2*Y[3]+0.5450343145e-2)*(2.*Y[2]-195.8034872)/((Y[2]-97.90174359)^2+(Y[3]-.8198365723)^2)^2-0.6378426459e-1/((Y[2]-98.70004908)^2+(Y[3]-1.715776493)^2)+(0.6378426459e-1*Y[2]-6.295510046)*(2.*Y[2]-197.4000982)/((Y[2]-98.70004908)^2+(Y[3]-1.715776493)^2)^2+(-0.5683341879e-1*Y[3]+0.9751344398e-1)*(2.*Y[2]-197.4000982)/((Y[2]-98.70004908)^2+(Y[3]-1.715776493)^2)^2-0.6500592479e-2/((Y[2]-99.89781703)^2+(Y[3]-1.788933400)^2)+(0.6500592479e-2*Y[2]-.6493949981)*(2.*Y[2]-199.7956341)/((Y[2]-99.89781703)^2+(Y[3]-1.788933400)^2)^2+(-.1064315267*Y[3]+.1903989129)*(2.*Y[2]-199.7956341)/((Y[2]-99.89781703)^2+(Y[3]-1.788933400)^2)^2+.1026176004/((Y[2]-100.7459320)^2+(Y[3]-.9399922915)^2)+(-.1026176004*Y[2]+10.33830579)*(2.*Y[2]-201.4918640)/((Y[2]-100.7459320)^2+(Y[3]-.9399922915)^2)^2+(-.1025177385*Y[3]+0.9636588393e-1)*(2.*Y[2]-201.4918640)/((Y[2]-100.7459320)^2+(Y[3]-.9399922915)^2)^2+.1841914880/((Y[2]-100.)^2+Y[3]^2)+(-.1841914880*Y[2]+18.41914880)*(2.*Y[2]-200.)/((Y[2]-100.)^2+Y[3]^2)^2+.1461653667*Y[3]*(2.*Y[2]-200.)/((Y[2]-100.)^2+Y[3]^2)^2+11.93662073*(2.*Y[2]-200.)/((Y[2]-100.)^2+Y[3]^2); 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 13 ) = (), ( 12 ) = (), ( 15 ) = ("rkf45"), ( 14 ) = ([0, 0]), ( 18 ) = ([]), ( 19 ) = (0), ( 16 ) = ([0, 0, 0, []]), ( 17 ) = ([proc (N, X, Y, YP) option `[Y[1] = S(t), Y[2] = X(t), Y[3] = Y(t)]`; YP[1] := -Y[3]*(-0.5731939284e-1*(Y[2]-97.79105004)*(2.*Y[3]+.7500941554)/((Y[2]-97.79105004)^2+(Y[3]+.3750470777)^2)^2+0.2599707238e-1/((Y[2]-97.79105004)^2+(Y[3]+.3750470777)^2)-0.2599707238e-1*(Y[3]+.3750470777)*(2.*Y[3]+.7500941554)/((Y[2]-97.79105004)^2+(Y[3]+.3750470777)^2)^2-1.*(0.7176288278e-1*Y[2]-7.025711349)*(2.*Y[3]-1.639673145)/((Y[2]-97.90174359)^2+(Y[3]-.8198365723)^2)^2-0.6648084910e-2/((Y[2]-97.90174359)^2+(Y[3]-.8198365723)^2)-1.*(-0.6648084910e-2*Y[3]+0.5450343145e-2)*(2.*Y[3]-1.639673145)/((Y[2]-97.90174359)^2+(Y[3]-.8198365723)^2)^2-1.*(0.6378426459e-1*Y[2]-6.295510046)*(2.*Y[3]-3.431552986)/((Y[2]-98.70004908)^2+(Y[3]-1.715776493)^2)^2-0.5683341879e-1/((Y[2]-98.70004908)^2+(Y[3]-1.715776493)^2)-1.*(-0.5683341879e-1*Y[3]+0.9751344398e-1)*(2.*Y[3]-3.431552986)/((Y[2]-98.70004908)^2+(Y[3]-1.715776493)^2)^2-1.*(0.6500592479e-2*Y[2]-.6493949981)*(2.*Y[3]-3.577866800)/((Y[2]-99.89781703)^2+(Y[3]-1.788933400)^2)^2-.1064315267/((Y[2]-99.89781703)^2+(Y[3]-1.788933400)^2)-1.*(-.1064315267*Y[3]+.1903989129)*(2.*Y[3]-3.577866800)/((Y[2]-99.89781703)^2+(Y[3]-1.788933400)^2)^2-1.*(-.1026176004*Y[2]+10.33830579)*(2.*Y[3]-1.879984583)/((Y[2]-100.7459320)^2+(Y[3]-.9399922915)^2)^2-.1025177385/((Y[2]-100.7459320)^2+(Y[3]-.9399922915)^2)-1.*(-.1025177385*Y[3]+0.9636588393e-1)*(2.*Y[3]-1.879984583)/((Y[2]-100.7459320)^2+(Y[3]-.9399922915)^2)^2-2.*(-.1841914880*Y[2]+18.41914880)*Y[3]/((Y[2]-100.)^2+Y[3]^2)^2+.1461653667/((Y[2]-100.)^2+Y[3]^2)-.2923307334*Y[3]^2/((Y[2]-100.)^2+Y[3]^2)^2+3.-23.87324146*Y[3]/((Y[2]-100.)^2+Y[3]^2)); YP[2] := -0.5731939284e-1*(Y[2]-97.79105004)*(2.*Y[3]+.7500941554)/((Y[2]-97.79105004)^2+(Y[3]+.3750470777)^2)^2+0.2599707238e-1/((Y[2]-97.79105004)^2+(Y[3]+.3750470777)^2)-0.2599707238e-1*(Y[3]+.3750470777)*(2.*Y[3]+.7500941554)/((Y[2]-97.79105004)^2+(Y[3]+.3750470777)^2)^2-1.*(0.7176288278e-1*Y[2]-7.025711349)*(2.*Y[3]-1.639673145)/((Y[2]-97.90174359)^2+(Y[3]-.8198365723)^2)^2-0.6648084910e-2/((Y[2]-97.90174359)^2+(Y[3]-.8198365723)^2)-1.*(-0.6648084910e-2*Y[3]+0.5450343145e-2)*(2.*Y[3]-1.639673145)/((Y[2]-97.90174359)^2+(Y[3]-.8198365723)^2)^2-1.*(0.6378426459e-1*Y[2]-6.295510046)*(2.*Y[3]-3.431552986)/((Y[2]-98.70004908)^2+(Y[3]-1.715776493)^2)^2-0.5683341879e-1/((Y[2]-98.70004908)^2+(Y[3]-1.715776493)^2)-1.*(-0.5683341879e-1*Y[3]+0.9751344398e-1)*(2.*Y[3]-3.431552986)/((Y[2]-98.70004908)^2+(Y[3]-1.715776493)^2)^2-1.*(0.6500592479e-2*Y[2]-.6493949981)*(2.*Y[3]-3.577866800)/((Y[2]-99.89781703)^2+(Y[3]-1.788933400)^2)^2-.1064315267/((Y[2]-99.89781703)^2+(Y[3]-1.788933400)^2)-1.*(-.1064315267*Y[3]+.1903989129)*(2.*Y[3]-3.577866800)/((Y[2]-99.89781703)^2+(Y[3]-1.788933400)^2)^2-1.*(-.1026176004*Y[2]+10.33830579)*(2.*Y[3]-1.879984583)/((Y[2]-100.7459320)^2+(Y[3]-.9399922915)^2)^2-.1025177385/((Y[2]-100.7459320)^2+(Y[3]-.9399922915)^2)-1.*(-.1025177385*Y[3]+0.9636588393e-1)*(2.*Y[3]-1.879984583)/((Y[2]-100.7459320)^2+(Y[3]-.9399922915)^2)^2-2.*(-.1841914880*Y[2]+18.41914880)*Y[3]/((Y[2]-100.)^2+Y[3]^2)^2+.1461653667/((Y[2]-100.)^2+Y[3]^2)-.2923307334*Y[3]^2/((Y[2]-100.)^2+Y[3]^2)^2+3.-23.87324146*Y[3]/((Y[2]-100.)^2+Y[3]^2); YP[3] := -0.5731939284e-1/((Y[2]-97.79105004)^2+(Y[3]+.3750470777)^2)+0.5731939284e-1*(Y[2]-97.79105004)*(2.*Y[2]-195.5821001)/((Y[2]-97.79105004)^2+(Y[3]+.3750470777)^2)^2+0.2599707238e-1*(Y[3]+.3750470777)*(2.*Y[2]-195.5821001)/((Y[2]-97.79105004)^2+(Y[3]+.3750470777)^2)^2-0.7176288278e-1/((Y[2]-97.90174359)^2+(Y[3]-.8198365723)^2)+(0.7176288278e-1*Y[2]-7.025711349)*(2.*Y[2]-195.8034872)/((Y[2]-97.90174359)^2+(Y[3]-.8198365723)^2)^2+(-0.6648084910e-2*Y[3]+0.5450343145e-2)*(2.*Y[2]-195.8034872)/((Y[2]-97.90174359)^2+(Y[3]-.8198365723)^2)^2-0.6378426459e-1/((Y[2]-98.70004908)^2+(Y[3]-1.715776493)^2)+(0.6378426459e-1*Y[2]-6.295510046)*(2.*Y[2]-197.4000982)/((Y[2]-98.70004908)^2+(Y[3]-1.715776493)^2)^2+(-0.5683341879e-1*Y[3]+0.9751344398e-1)*(2.*Y[2]-197.4000982)/((Y[2]-98.70004908)^2+(Y[3]-1.715776493)^2)^2-0.6500592479e-2/((Y[2]-99.89781703)^2+(Y[3]-1.788933400)^2)+(0.6500592479e-2*Y[2]-.6493949981)*(2.*Y[2]-199.7956341)/((Y[2]-99.89781703)^2+(Y[3]-1.788933400)^2)^2+(-.1064315267*Y[3]+.1903989129)*(2.*Y[2]-199.7956341)/((Y[2]-99.89781703)^2+(Y[3]-1.788933400)^2)^2+.1026176004/((Y[2]-100.7459320)^2+(Y[3]-.9399922915)^2)+(-.1026176004*Y[2]+10.33830579)*(2.*Y[2]-201.4918640)/((Y[2]-100.7459320)^2+(Y[3]-.9399922915)^2)^2+(-.1025177385*Y[3]+0.9636588393e-1)*(2.*Y[2]-201.4918640)/((Y[2]-100.7459320)^2+(Y[3]-.9399922915)^2)^2+.1841914880/((Y[2]-100.)^2+Y[3]^2)+(-.1841914880*Y[2]+18.41914880)*(2.*Y[2]-200.)/((Y[2]-100.)^2+Y[3]^2)^2+.1461653667*Y[3]*(2.*Y[2]-200.)/((Y[2]-100.)^2+Y[3]^2)^2+11.93662073*(2.*Y[2]-200.)/((Y[2]-100.)^2+Y[3]^2); 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 20 ) = ([])  ] ))  ] ); _y0 := Array(0..3, {(1) = 0., (2) = 0., (3) = 98.17642962}); _vmap := array( 1 .. 3, [( 1 ) = (1), ( 2 ) = (2), ( 3 ) = (3)  ] ); _x0 := _dtbl[1][5][5]; _n := _dtbl[1][4][1]; _ne := _dtbl[1][4][3]; _nd := _dtbl[1][4][4]; _nv := _dtbl[1][4][16]; if not type(_xout, 'numeric') then if member(_xout, ["start", "left", "right"]) then if _Env_smart_dsolve_numeric = true or _dtbl[1][4][10] = 1 then if _xout = "left" then if type(_dtbl[2], 'table') then return _dtbl[2][5][1] end if elif _xout = "right" then if type(_dtbl[3], 'table') then return _dtbl[3][5][1] end if end if end if; return _dtbl[1][5][5] elif _xout = "method" then return _dtbl[1][15] elif _xout = "storage" then return evalb(_dtbl[1][4][10] = 1) elif _xout = "leftdata" then if not type(_dtbl[2], 'array') then return NULL else return eval(_dtbl[2]) end if elif _xout = "rightdata" then if not type(_dtbl[3], 'array') then return NULL else return eval(_dtbl[3]) end if elif _xout = "enginedata" then return eval(_dtbl[1]) elif _xout = "enginereset" then _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); return NULL elif _xout = "initial" then return procname(_y0[0]) elif _xout = "laxtol" then return _dtbl[`if`(member(_dtbl[4], {2, 3}), _dtbl[4], 1)][5][18] elif _xout = "numfun" then return `if`(member(_dtbl[4], {2, 3}), _dtbl[_dtbl[4]][4][18], 0) elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return procname(_y0[0]), [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "last" then if _dtbl[4] <> 2 and _dtbl[4] <> 3 or _x0-_dtbl[_dtbl[4]][5][1] = 0. then error "no information is available on last computed point" else _xout := _dtbl[_dtbl[4]][5][1] end if elif _xout = "function" then if _dtbl[1][4][33]-2. = 0 then return eval(_dtbl[1][10], 1) else return eval(_dtbl[1][10][1], 1) end if elif _xout = "map" then return copy(_vmap) elif type(_xin, `=`) and type(rhs(_xin), 'list') and member(lhs(_xin), {"initial", "parameters", "initial_and_parameters"}) then _ini, _par := [], []; if lhs(_xin) = "initial" then _ini := rhs(_xin) elif lhs(_xin) = "parameters" then _par := rhs(_xin) elif select(type, rhs(_xin), `=`) <> [] then _par, _ini := selectremove(type, rhs(_xin), `=`) elif nops(rhs(_xin)) < nops(_pars)+1 then error "insufficient data for specification of initial and parameters" else _par := rhs(_xin)[-nops(_pars) .. -1]; _ini := rhs(_xin)[1 .. -nops(_pars)-1] end if; _xout := lhs(_xout); if _par <> [] then `dsolve/numeric/process_parameters`(_n, _pars, _par, _y0) end if; if _ini <> [] then `dsolve/numeric/process_initial`(_n-_ne, _ini, _y0, _pars, _vmap) end if; `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars); if _Env_smart_dsolve_numeric = true and type(_y0[0], 'numeric') and _dtbl[1][4][10] <> 1 then procname("right") := _y0[0]; procname("left") := _y0[0] end if; if _xout = "initial" then return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)] elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] else return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)], [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] end if elif _xin = "eventstop" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then return 0 end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 10 and 10 <= _dtbl[5-_i][4][9] then _i := 5-_i; _dtbl[4] := _i; _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) elif 10 <= _dtbl[_i][4][9] then _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) else return 0 end if elif _xin = "eventstatus" then if _nv = 0 then error "this solution has no events" end if; _i := [selectremove(proc (a) options operator, arrow; _dtbl[1][3][1][a, 7] = 1 end proc, {seq(_j, _j = 1 .. round(_dtbl[1][3][1][_nv+1, 1]))})]; return ':-enabled' = _i[1], ':-disabled' = _i[2] elif _xin = "eventclear" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then error "no events to clear" end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 10 and 10 < _dtbl[5-_i][4][9] then _dtbl[4] := 5-_i; _i := 5-_i end if; if _dtbl[_i][4][9] < 10 then error "no events to clear" elif _nv < _dtbl[_i][4][9]-10 then error "event error condition cannot be cleared" else _j := _dtbl[_i][4][9]-10; if irem(round(_dtbl[_i][3][1][_j, 4]), 2) = 1 then error "retriggerable events cannot be cleared" end if; _j := round(_dtbl[_i][3][1][_j, 1]); for _k to _nv do if _dtbl[_i][3][1][_k, 1] = _j then if _dtbl[_i][3][1][_k, 2] = 3 then error "range events cannot be cleared" end if; _dtbl[_i][3][1][_k, 8] := _dtbl[_i][3][1][_nv+1, 8] end if end do; _dtbl[_i][4][17] := 0; _dtbl[_i][4][9] := 0; if _dtbl[1][4][10] = 1 then if _i = 2 then try procname(procname("left")) catch:  end try else try procname(procname("right")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and member(lhs(_xin), {"eventdisable", "eventenable"}) then if _nv = 0 then error "this solution has no events" end if; if type(rhs(_xin), {('list')('posint'), ('set')('posint')}) then _i := {op(rhs(_xin))} elif type(rhs(_xin), 'posint') then _i := {rhs(_xin)} else error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; if select(proc (a) options operator, arrow; _nv < a end proc, _i) <> {} then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _k := {}; for _j to _nv do if member(round(_dtbl[1][3][1][_j, 1]), _i) then _k := `union`(_k, {_j}) end if end do; _i := _k; if lhs(_xin) = "eventdisable" then _dtbl[4] := 0; _j := [evalb(assigned(_dtbl[2]) and member(_dtbl[2][4][17], _i)), evalb(assigned(_dtbl[3]) and member(_dtbl[3][4][17], _i))]; for _k in _i do _dtbl[1][3][1][_k, 7] := 0; if assigned(_dtbl[2]) then _dtbl[2][3][1][_k, 7] := 0 end if; if assigned(_dtbl[3]) then _dtbl[3][3][1][_k, 7] := 0 end if end do; if _j[1] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[2][3][4][_k, 1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to defined init `, _dtbl[2][3][4][_k, 1]); _dtbl[2][3][1][_k, 8] := _dtbl[2][3][4][_k, 1] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to rate hysteresis init `, _dtbl[2][5][24]); _dtbl[2][3][1][_k, 8] := _dtbl[2][5][24] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to initial init `, _x0); _dtbl[2][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to fireinitial init `, _x0-1); _dtbl[2][3][1][_k, 8] := _x0-1 end if end do; _dtbl[2][4][17] := 0; _dtbl[2][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("left")) end if end if; if _j[2] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[3][3][4][_k, 2], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to defined init `, _dtbl[3][3][4][_k, 2]); _dtbl[3][3][1][_k, 8] := _dtbl[3][3][4][_k, 2] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to rate hysteresis init `, _dtbl[3][5][24]); _dtbl[3][3][1][_k, 8] := _dtbl[3][5][24] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to initial init `, _x0); _dtbl[3][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to fireinitial init `, _x0+1); _dtbl[3][3][1][_k, 8] := _x0+1 end if end do; _dtbl[3][4][17] := 0; _dtbl[3][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("right")) end if end if else for _k in _i do _dtbl[1][3][1][_k, 7] := 1 end do; _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); _dtbl[4] := 0; if _dtbl[1][4][10] = 1 then if _x0 <= procname("right") then try procname(procname("right")) catch:  end try end if; if procname("left") <= _x0 then try procname(procname("left")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and lhs(_xin) = "eventfired" then if not type(rhs(_xin), 'list') then error "'eventfired' must be specified as a list" end if; if _nv = 0 then error "this solution has no events" end if; if _dtbl[4] <> 2 and _dtbl[4] <> 3 then error "'direction' must be set prior to calling/setting 'eventfired'" end if; _i := _dtbl[4]; _val := NULL; if not assigned(_EnvEventRetriggerWarned) then _EnvEventRetriggerWarned := false end if; for _k in rhs(_xin) do if type(_k, 'integer') then _src := _k elif type(_k, 'integer' = 'anything') and type(evalf(rhs(_k)), 'numeric') then _k := lhs(_k) = evalf[max(Digits, 18)](rhs(_k)); _src := lhs(_k) else error "'eventfired' entry is not valid: %1", _k end if; if _src < 1 or round(_dtbl[1][3][1][_nv+1, 1]) < _src then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _src := {seq(`if`(_dtbl[1][3][1][_j, 1]-_src = 0., _j, NULL), _j = 1 .. _nv)}; if nops(_src) <> 1 then error "'eventfired' can only be set/queried for root-finding events and time/interval events" end if; _src := _src[1]; if _dtbl[1][3][1][_src, 2] <> 0. and _dtbl[1][3][1][_src, 2]-2. <> 0. then error "'eventfired' can only be set/queried for root-finding events and time/interval events" elif irem(round(_dtbl[1][3][1][_src, 4]), 2) = 1 then if _EnvEventRetriggerWarned = false then WARNING(`'eventfired' has no effect on events that retrigger`) end if; _EnvEventRetriggerWarned := true end if; if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then _val := _val, undefined elif type(_dtbl[_i][3][4][_src, _i-1], 'undefined') or _i = 2 and _dtbl[2][3][1][_src, 8] < _dtbl[2][3][4][_src, 1] or _i = 3 and _dtbl[3][3][4][_src, 2] < _dtbl[3][3][1][_src, 8] then _val := _val, _dtbl[_i][3][1][_src, 8] else _val := _val, _dtbl[_i][3][4][_src, _i-1] end if; if type(_k, `=`) then if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then error "cannot set event code for a rate hysteresis event" end if; userinfo(3, {'events', 'eventreset'}, `manual set event code `, _src, ` to value `, rhs(_k)); _dtbl[_i][3][1][_src, 8] := rhs(_k); _dtbl[_i][3][4][_src, _i-1] := rhs(_k) end if end do; return [_val] elif type(_xin, `=`) and lhs(_xin) = "direction" then if not member(rhs(_xin), {-1, 1, ':-left', ':-right'}) then error "'direction' must be specified as either '1' or 'right' (positive) or '-1' or 'left' (negative)" end if; _src := `if`(_dtbl[4] = 2, -1, `if`(_dtbl[4] = 3, 1, undefined)); _i := `if`(member(rhs(_xin), {1, ':-right'}), 3, 2); _dtbl[4] := _i; _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if; return _src elif _xin = "eventcount" then if _dtbl[1][3][1] = 0 or _dtbl[4] <> 2 and _dtbl[4] <> 3 then return 0 else return round(_dtbl[_dtbl[4]][3][1][_nv+1, 12]) end if else return "procname" end if end if; if _xout = _x0 then return [_x0, seq(evalf(_dtbl[1][6][_vmap[_i]]), _i = 1 .. _n-_ne)] end if; _i := `if`(_x0 <= _xout, 3, 2); if _xin = "last" and 0 < _dtbl[_i][4][9] and _dtbl[_i][4][9] < 10 then _dat := eval(_dtbl[_i], 2); _j := _dat[4][20]; return [_dat[11][_j, 0], seq(_dat[11][_j, _vmap[_i]], _i = 1 .. _n-_ne-_nd), seq(_dat[8][1][_vmap[_i]], _i = _n-_ne-_nd+1 .. _n-_ne)] end if; if not type(_dtbl[_i], 'array') then _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if end if; if _xin <> "last" then if 0 < 0 then if `dsolve/numeric/checkglobals`(op(_dtbl[1][14]), _pars, _n, _y0) then `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars, _i) end if end if; if _dtbl[1][4][7] = 0 then error "parameters must be initialized before solution can be computed" end if end if; _dat := eval(_dtbl[_i], 2); _dtbl[4] := _i; try _src := `dsolve/numeric/SC/IVPrun`(_dat, _xout) catch: userinfo(2, `dsolve/debug`, print(`Exception in solnproc:`, [lastexception][2 .. -1])); error  end try; if _src = 0 and 10 < _dat[4][9] then _val := _dat[3][1][_nv+1, 8] else _val := _dat[11][_dat[4][20], 0] end if; if _src <> 0 or _dat[4][9] <= 0 then _dtbl[1][5][1] := _xout else _dtbl[1][5][1] := _val end if; if _i = 3 and _val < _xout then Rounding := -infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further right of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further right of %1, maxfun limit exceeded (see <a href='http://www.maplesoft.com/support/help/search.aspx?term=dsolve,maxfun' target='_new'>?dsolve,maxfun</a> for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further right of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further right of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif 10 < _dat[4][9] then if _dat[4][9]-10 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further right of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-10, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further right of %1", evalf[8](_val) end if elif _i = 2 and _xout < _val then Rounding := infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further left of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further left of %1, maxfun limit exceeded (see <a href='http://www.maplesoft.com/support/help/search.aspx?term=dsolve,maxfun' target='_new'>?dsolve,maxfun</a> for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further left of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further left of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif 10 < _dat[4][9] then if _dat[4][9]-10 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further left of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-10, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further left of %1", evalf[8](_val) end if end if; if _EnvInFsolve = true then _dig := _dat[4][26]; _dat[4][26] := _EnvDSNumericSaveDigits; _Env_dsolve_SC_native := true; if _dat[4][25] = 1 then _i := 1; _dat[4][25] := 2 else _i := _dat[4][25] end if; _val := `dsolve/numeric/SC/IVPval`(_dat, _xout, _src); _dat[4][25] := _i; _dat[4][26] := _dig; [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] else Digits := _dat[4][26]; _val := `dsolve/numeric/SC/IVPval`(eval(_dat, 2), _xout, _src); [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] end if end proc, (2) = Array(1..4, {(1) = 18446744074566161350, (2) = 18446744074566161614, (3) = 18446744074566161790, (4) = 18446744074566161966}), (3) = [t, S(t), X(t), Y(t)], (4) = []}); _solnproc := _dat[1]; _pars := map(rhs, _dat[4]); if not type(_xout, 'numeric') then if member(t, ["start", 'start', "method", 'method', "left", 'left', "right", 'right', "leftdata", "rightdata", "enginedata", "eventstop", 'eventstop', "eventclear", 'eventclear', "eventstatus", 'eventstatus', "eventcount", 'eventcount', "laxtol", 'laxtol', "numfun", 'numfun', NULL]) then _res := _solnproc(convert(t, 'string')); if 1 < nops([_res]) then return _res elif type(_res, 'array') then return eval(_res, 1) elif _res <> "procname" then return _res end if elif member(t, ["last", 'last', "initial", 'initial', NULL]) then _res := _solnproc(convert(t, 'string')); if type(_res, 'list') then return _res[2] else return NULL end if elif member(t, ["parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(t, 'string'); _res := _solnproc(_xout); if _xout = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [_res[2], seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(lhs(t), 'string') = rhs(t); if lhs(_xout) = "initial" then if type(rhs(_xout), 'list') then _res := _solnproc(_xout) else _res := _solnproc("initial" = ["single", 2, rhs(_xout)]) end if elif not type(rhs(_xout), 'list') then error "initial and/or parameter values must be specified in a list" elif lhs(_xout) = "initial_and_parameters" and nops(rhs(_xout)) = nops(_pars)+1 then _res := _solnproc(lhs(_xout) = ["single", 2, op(rhs(_xout))]) else _res := _solnproc(_xout) end if; if lhs(_xout) = "initial" then return _res[2] elif lhs(_xout) = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [_res[2], seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["eventdisable", 'eventdisable', "eventenable", 'eventenable', "eventfired", 'eventfired', "direction", 'direction', NULL]) then return _solnproc(convert(lhs(t), 'string') = rhs(t)) elif _xout = "solnprocedure" then return eval(_solnproc) elif _xout = "sysvars" then return _dat[3] end if; if procname <> unknown then return ('procname')(t) else _ndsol := `tools/gensym`("S(t)"); eval(FromInert(_Inert_FUNCTION(_Inert_NAME("assign"), _Inert_EXPSEQ(ToInert(_ndsol), _Inert_VERBATIM(pointto(_dat[2][2])))))); return FromInert(_Inert_FUNCTION(ToInert(_ndsol), _Inert_EXPSEQ(ToInert(t)))) end if end if; try _res := _solnproc(_xout); _res[2] catch: error  end try end proc

(1)

``

NULL

with(plots):

animate(plot, [[XX(t), YY(t), t = 0 .. (1/10)*a]], a = 1 .. 260);

 

plot([XX(t), YY(t), t = 0 .. 22.7])

with(DEtools)

solve([XX(t) = xf, t > 22, t < 23], [t], allsolutions = true)

[]

(2)

min(allvalues(abs(RootOf(50000000*X(_Z)-4908821481))))

min(abs(RootOf(50000000*X(_Z)-4908821481)))

(3)

remove_RootOf(t = RootOf(50000000*X(_Z)-4908821481))

50000000*X(t)-4908821481 = 0

(4)

allvalues(RootOf(50000000*X(_Z)-4908821481))

RootOf(50000000*X(_Z)-4908821481)

(5)

solve(50000000*X(t)-4908821481 = 0)

RootOf(50000000*X(_Z)-4908821481)

(6)

tyu := RootOf(50000000*XX(t)-4908821481, t)

allvalues(tyu)

NULL


Download for_clever_guys.mw


i m calculating space of this elipse,i need to find point t1 wherein [XX(t1), YY(t1)] creates full circle and get S(t1). here its between 22.6-22.7. but i need to find it with ~0.1^3  accuracy.

for_clever_guys.mw

Hello

 

Is it me or is it not possible to hide table borders in Maple 18?

I can not hide the borders when I make tables ind Maple 18..

 

Jakob

 

 support type error when plot, and moreover how to animate this plot

restart;
with(ExcelTools):
with(ListTools):
with(DynamicSystems):
filename := "0257.HK";
open3 := Import(cat(cat("C://Temp//HK//Bank//",filename),".xls"), filename, "B2:B100");
high3 := Import(cat(cat("C://Temp//HK//Bank//",filename),".xls"), filename, "C2:C100");
low3 := Import(cat(cat("C://Temp//HK//Bank//",filename),".xls"), filename, "D2:D100");
close3 := Import(cat(cat("C://Temp//HK//Bank//",filename),".xls"), filename, "E2:E100");
with(CurveFitting):
n := 31;
f := Vector(n);
f2 := Vector(n);
open2 := Vector(n);high2 := Vector(n);gain2 := Vector(n);algebra2 := Vector(n);creative2 := Vector(n);creative3 := Vector(n);
upper2 := Vector(n);lower2 := Vector(n);upperloweratio := Vector(n);
deltaopen2 := Vector(n); deltahigh2 := Vector(n); deltalow2 := Vector(n); deltaclose2 := Vector(n);
logn := Vector(n);
for i from 0 to n-4 do
open2[i+1] := PolynomialInterpolation([[0,open3[n-i][1]],[1,open3[n-(i+1)][1]],[2,open3[n-(i+2)][1]],[4,open3[n-(i+3)][1]]],t):
high2[i+1] := PolynomialInterpolation([[0,high3[n-i][1]],[1,high3[n-(i+1)][1]],[2,high3[n-(i+2)][1]],[4,high3[n-(i+3)][1]]],t):
low2[i+1] := PolynomialInterpolation([[0,low3[n-i][1]],[1,low3[n-(i+1)][1]],[2,low3[n-(i+2)][1]],[4,low3[n-(i+3)][1]]],t):
if (close3[i+1][1]/close3[i+2][1]-1) < 0 then
gain2[i+1] := -1*round(100*abs(close3[i+1][1]/close3[i+2][1]-1)):
else
gain2[i+1] := round(abs(100*(close3[i+1][1]/close3[i+2][1]-1))):
end if;
od;
n := 31;
newclose := Vector(n);
for j from 0 to n-4 do
for i from 0 to n-4 do
x1 := close3[i+1];
y1 := close3[i+1];
newclose[i+1] := subs(y=y1, subs(x=x1, (1/2)*(-y+sqrt(-3*y^2-4*y*x))/y))
od;
close3 := newclose;
plot(close3(x), x=1..31);
od;

 

 

i am using maple to solve a system of ordinary differential equations , 3 unknows (x,y, x ), and 3 equations (dx/dt,dy/dt,dz/dt)

there is one known variable denpendent on x and z

# code begins here

if x(t) <= z(t) then Q(t) := 8 end if;

if x(t) > z(t) then Q(t) := 10 end if;

 

eq1 := diff(x(t), t) = 3*x(t)-1;

eq2 := diff(y(t), t) = y(t)+Q(t);

eq3 := diff(z(t), t) = z(t);

eqs := {eq1, eq2, eq3};

 

# code ends here

 

above i put the system of ODEs, the code maybe illegal in maple, but i wrote in this way to make it clear.

Q is dependent on x and z.

 

in the past, when i was trying to solve ODEs, normally, eqs contains with only x,y,z as unknowns. but in this eqs, clearly, Q is included as an unknown. 

 

i've tried to use piecewise function to express Q(t), but failed.

 

how could i solve a system like this? thanks 

 

 

First 1417 1418 1419 1420 1421 1422 1423 Last Page 1419 of 2427