MaplePrimes Questions

solve the system of equations (10a+3b+4c+d+e=0,11b+2c+2d+3e+f=0,15c+4d+5e+4f+g=0,2a+b-3c+12d-3e+f+g=0,6a-5b+3c-d+17e+f=0,3a+2b-3c+4d+e-16f+2g=0,4a-6b+c+d+3e+19g=0)

I would like to express 2*sin(x+Pi/4) in the form sqrt(2)*sin(x)+sqrt(2)*cos(x). I've tried many variations using simplify/expand/combine/etc. to no avail. Any ideas?

-.733448502640020+0.*I

i am investigating above numeric

when ln(-.733448502640020+0.*I);

 

-.3099978916+3.141592654*I

it has Pi imaginary part

then 

i try 

complex(1, exp(Pi)^3);

it return Complex(...) but not 1 + i*exp(Pi)^3

 

3 means 3 times come from recursively  using pattern ln(Re(ln(x) - 3.141592654*I))

3.141592654 in imaginary part appear 3 times

i use Round(Im(x), 8) during above operation

 

 actually i want to extract Pi imaginary part from -.733448502640020+0.*I

 

however, after minus exp(Pi) from it first time,

it is near the original number  -.733448502640020

is this elimination of imaginary part is just a illusion from log function?

I have the  following simple code in Maple:

x:=2*y

save x, "file1.mpl";

This code works successfully in Maple 13 and 14. However, does not work in Maple 17.  I do not understand why this happens. Can anyone help me to save a procedure in Maple 17.

 

HI,

I need to solve the following integration in terms of z. But Maple is not giving me any exiplict expression in terms of z. Please help me out for the same. Thanx in advance.

 

f := BesselJ(1, t)*(z*BesselJ(0, t)*BesselJ(1, z)-t*BesselJ(0, z)*BesselJ(1, t))/((1+10*t)*(z^2-t^2))

BesselJ(1, t)*(z*BesselJ(0, t)*BesselJ(1, z)-t*BesselJ(0, z)*BesselJ(1, t))/((1+10*t)*(z^2-t^2))

(1)

int(f, t = 0 .. infinity)

int(BesselJ(1, t)*(z*BesselJ(0, t)*BesselJ(1, z)-t*BesselJ(0, z)*BesselJ(1, t))/((1+10*t)*(z^2-t^2)), t = 0 .. infinity)

(2)

``

 

Download question.mw

 

Regards

Sunit

Dear Experts,

When I run this code in maple I am facing with "Error, (in dsolve/numeric/bvp) initial Newton iteration is not converging".

restart:
 
 unprotect('gamma');
 lambda:=5*10^5:
 mu:=0.003:
 beta:=4*10^(-10):
 delta:=0.2:
 alpha:=0.043:
 sigma:=alpha+delta:
 k:=6.24:
 gamma:=0.65:
 A[1]:=1:
 A[2]:=1:

ics := x[1](0)=1.7*10^8, x[2](0)=0,x[3](0)=400,psi[1](50)=0,psi[2](50)=0,psi[3](50)=0:

ode1:=diff(x[1](t), t)=lambda-mu*x[1](t)-(1-beta*x[1](t)*x[3](t)*(psi[1](t)-psi[2](t))/A[1])*beta*x[1](t)*x[3](t)+delta*x[2](t),
 diff(x[2](t), t) =(1-beta*x[1](t)*x[3](t)*(psi[1](t)-psi[2](t))/A[1])*beta*x[1](t)*x[3](t)-sigma*x[2](t),
 diff(x[3](t), t) =(1+psi[3](t)*k*x[2](t)/A[2])*k*x[2](t)-gamma*x[3](t),
 diff(psi[1](t), t) =-1+1/A[1]*beta^2*x[1](t)*x[3](t)^2*(psi[1](t)-psi[2](t))^2-psi[1](t)*(-mu+beta^2*x[3](t)^2*(psi[1](t)-psi[2](t))/A[1]*x[1](t)-(1-beta*x[1](t)*x[3](t)*(psi[1](t)-psi[2](t))/A[1])*beta*x[3](t))-psi[2](t)*(-beta^2*x[3](t)^2*(psi[1](t)-psi[2](t))/A[1]*x[1](t)+(1-beta*x[1](t)*x[3](t)*(psi[1](t)-psi[2](t))/A[1])*beta*x[3](t)),
> diff(psi[2](t), t) =1/A[2]*psi[3](t)^2*k^2*x[2](t)-psi[1](t)*delta+psi[2](t)*sigma-psi[3](t)*(psi[3](t)*k^2/A[2]*x[2](t)+(1+psi[3](t)*k*x[2](t)/A[2])*k),
> diff(psi[3](t), t) = 1/A[1]*beta^2*x[1](t)^2*x[3](t)*(psi[1](t)-psi[2](t))^2-psi[1](t)*(beta^2*x[1](t)^2*(psi[1](t)-psi[2](t))/A[1]*x[3](t)-(1-beta*x[1](t)*x[3](t)*(psi[1](t)-psi[2](t))/A[1])*beta*x[1](t))-psi[2](t)*(-beta^2*x[1](t)^2*(psi[1](t)-psi[2](t))/A[1]*x[3](t)+(1-beta*x[1](t)*x[3](t)*(psi[1](t)-psi[2](t))/A[1])*beta*x[1](t))+psi[3](t)*gamma;

sol:=dsolve([ode1,ics],numeric, method = bvp[midrich]);

Error, (in dsolve/numeric/bvp) initial Newton iteration is not converging

Please help me to solve this equation on Maple.




Hello,

I understand that the question is not really Maple related, but I still hope for some help.


See the worksheet below. I defined a pure sine wave and determined the complex Fourier coefficients for it which I used to plot the amplitude and power spectra. It is easy to see the relations in terms of amplitude and power between the time and frequency signal.

The Fourier Transform of the sine wave logically shows the Dirac distribution, but I can't see the relation in terms of amplitude and power to the original time signal. Taking the integral of the transformed signal (A) wil result in a step of Pi at w=-1 and again at w=1. What am I missing here?

Thanks

restart; with(inttrans); with(plots); with(DynamicSystems)

 

Define a signal:

 

T := 2*Pi;

2*Pi

 

sin(t)

(1)

 

Determine the waveform power:

 

F := (int(f^2, t))/T+C:

C := simplify(solve(subs(t = 0, F) = 0, C)):

eval((int(f^2, t = -(1/2)*T .. (1/2)*T))/T)

1/2

(2)

plot([f, f^2, F], t = -Pi .. Pi, gridlines = true)

 

 

Determine the complex Fourier series coefficients and plot the spectra:

 

q := proc (n) options operator, arrow; (int(f*exp(-(2*I)*n*Pi*t/T), t = -(1/2)*T .. (1/2)*T))/T end proc:

simplify(q(n))

I*sin(Pi*n)/(Pi*(n^2-1))

(3)

ComplexCoefficients := evalf(`<,>`(seq(q(n), n = -1 .. 1)))

ComplexCoefficients := Vector(3, {(1) = .5000000000*I, (2) = 0., (3) = -.5000000000*I})

(4)

B := evalf(`<,>`(seq(sqrt(Re(q(n))^2+Im(q(n))^2), n = -3 .. 3))):

 

C := evalf(`<,>`(seq(Re(q(n))^2+Im(q(n))^2, n = -3 .. 3))); -1; DiscretePlot(C, -3, 1, titlefont = ["ARIAL", "bold", 14], title = "Power Spectrum", color = "Red", gridlines = true, style = stem)

 

So, the signal power for f of 1/2 can be found directly within the power spectrum plot "(2*1/(4))."

 

I would expect to be able to directly see the amplitude and power relation to the time signal from the Fourier Transform of f but i can't.

 

A := fourier(f, t, w);

I*Pi*(Dirac(w+1)-Dirac(w-1))

(5)


Download 20140127MaplePrime.mw

 

 

Hello everyone,

Jus started using Maple and I was wondering why maple doesn't execute the following function:

Thx,

 

Frank

I have to solve a system composed of a mass, a spring and a damper, represented by this equation :

m (d2x/dt2) + c (dx/dt) + k x(t) = F(t)

with m the mass, t the time, c the constant of the damper, k the constant of the spring, F an external force applied to the mass and x(t) the movement of the mass m at time t.

Please help me to solve this equation on Maple.

I am using Maple worksheets in a class. I have a student who finds it difficult to spend much time at the keyboard because of a joint disorder. I am looking for alternate input methods such as Dragon or the Dictate Facility on MacBooks which might help her out. Any suggestions would be appreciated. 

Thanks,

-Maury

intergration

f:=Intat(1.0000000000000000000*(1.7969454312181156991*_f^1.2+1.80)^1.2/sqrt(-1.4974545260150964159*(8.9847271560905784954*_f^3+14.640368911168931285*_f^2+30.220202497712627297)^1.2), _f = 0);

 

I tried to use  value(f);  eval(f); simplify(f); expand(f), but non provide an answer, but return an integral unevaluated.

 

Is there a command to produce a  numerical result ?

Can anyone tell me how to use dsolve to find the solution to the problem in the attachment.  It is faily easy to do using substitution for homogeneous coefficients, but dsolve seems to put out a very complicated solution to the problem.

with(DEtools):

2*x*y(x)+(x^2+y(x)^2)*(diff(y(x), x))

2*x*y(x)+(x^2+y(x)^2)*(diff(y(x), x))

(1)

dsolve(%)

y(x) = ((1/2)*(4+4*(4*x^6*_C1^3+1)^(1/2))^(1/3)-2*x^2*_C1/(4+4*(4*x^6*_C1^3+1)^(1/2))^(1/3))/_C1^(1/2), y(x) = (-(1/4)*(4+4*(4*x^6*_C1^3+1)^(1/2))^(1/3)+x^2*_C1/(4+4*(4*x^6*_C1^3+1)^(1/2))^(1/3)-((1/2)*I)*3^(1/2)*((1/2)*(4+4*(4*x^6*_C1^3+1)^(1/2))^(1/3)+2*x^2*_C1/(4+4*(4*x^6*_C1^3+1)^(1/2))^(1/3)))/_C1^(1/2), y(x) = (-(1/4)*(4+4*(4*x^6*_C1^3+1)^(1/2))^(1/3)+x^2*_C1/(4+4*(4*x^6*_C1^3+1)^(1/2))^(1/3)+((1/2)*I)*3^(1/2)*((1/2)*(4+4*(4*x^6*_C1^3+1)^(1/2))^(1/3)+2*x^2*_C1/(4+4*(4*x^6*_C1^3+1)^(1/2))^(1/3)))/_C1^(1/2)

(2)

NULL

 

Download DEprob.mw

I have 2 problem with my jacobian matrix:

first: i can not evaluate 11*11 jacobian matrix. at last i can evaluate 10*10 matrix. can i solve this?
second: i want to export my matrix for matlab but i see this error : {export matrix"cannot convert matrix element to float[8] data type"}
so how i can use this matrix in my matlab code?
 my jacobian matrix:


with(VectorCalculus); Jacobian([VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`*`(2.68, ex), VectorCalculus:-`-`(VectorCalculus:-`*`(2, vx))), VectorCalculus:-`*`(VectorCalculus:-`*`(VectorCalculus:-`*`(VectorCalculus:-`*`(VectorCalculus:-`*`(3.500000001, e^VectorCalculus:-`*`(1.666666667, sqrt(VectorCalculus:-`+`(VectorCalculus:-`-`(VectorCalculus:-`+`(sqrt(VectorCalculus:-`+`(rx^2, ry^2)), sqrt(VectorCalculus:-`+`(VectorCalculus:-`+`(rx, VectorCalculus:-`-`(VectorCalculus:-`*`(2, vb(ex))))^2, VectorCalculus:-`+`(ry, VectorCalculus:-`-`(VectorCalculus:-`*`(2, vb(ey))))^2)))^2), VectorCalculus:-`-`(VectorCalculus:-`*`(4, vb^2)))))), VectorCalculus:-`+`(sqrt(VectorCalculus:-`+`(rx^2, ry^2)), sqrt(VectorCalculus:-`+`(VectorCalculus:-`+`(rx, VectorCalculus:-`-`(VectorCalculus:-`*`(2, vb(ex))))^2, VectorCalculus:-`+`(ry, VectorCalculus:-`-`(VectorCalculus:-`*`(2, vb(ey))))^2)))), VectorCalculus:-`+`(VectorCalculus:-`*`(rx, 1/sqrt(VectorCalculus:-`+`(rx^2, ry^2))), VectorCalculus:-`*`(1/2, VectorCalculus:-`*`(VectorCalculus:-`+`(VectorCalculus:-`*`(2, rx), VectorCalculus:-`-`(VectorCalculus:-`*`(4, vb(ex)))), 1/sqrt(VectorCalculus:-`+`(VectorCalculus:-`+`(rx, VectorCalculus:-`-`(VectorCalculus:-`*`(2, vb(ex))))^2, VectorCalculus:-`+`(ry, VectorCalculus:-`-`(VectorCalculus:-`*`(2, vb(ey))))^2)))))), ln(e)), 1/sqrt(VectorCalculus:-`+`(VectorCalculus:-`-`(VectorCalculus:-`+`(sqrt(VectorCalculus:-`+`(rx^2, ry^2)), sqrt(VectorCalculus:-`+`(VectorCalculus:-`+`(rx, VectorCalculus:-`-`(VectorCalculus:-`*`(2, vb(ex))))^2, VectorCalculus:-`+`(ry, VectorCalculus:-`-`(VectorCalculus:-`*`(2, vb(ey))))^2)))^2), VectorCalculus:-`-`(VectorCalculus:-`*`(4, vb^2)))))), VectorCalculus:-`*`(VectorCalculus:-`*`(VectorCalculus:-`*`(VectorCalculus:-`*`(50.00000000, e^VectorCalculus:-`-`(VectorCalculus:-`*`(5.000000000, sqrt(VectorCalculus:-`+`(Rx^2, Ry^2))))), Rx), ln(e)), 1/sqrt(VectorCalculus:-`+`(Rx^2, Ry^2)))), VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`*`(2.68, ey), VectorCalculus:-`-`(VectorCalculus:-`*`(2, vy))), VectorCalculus:-`*`(VectorCalculus:-`*`(VectorCalculus:-`*`(VectorCalculus:-`*`(VectorCalculus:-`*`(3.500000001, e^VectorCalculus:-`*`(1.666666667, sqrt(VectorCalculus:-`+`(VectorCalculus:-`-`(VectorCalculus:-`+`(sqrt(VectorCalculus:-`+`(rx^2, ry^2)), sqrt(VectorCalculus:-`+`(VectorCalculus:-`+`(rx, VectorCalculus:-`-`(VectorCalculus:-`*`(2, vb(ex))))^2, VectorCalculus:-`+`(ry, VectorCalculus:-`-`(VectorCalculus:-`*`(2, vb(ey))))^2)))^2), VectorCalculus:-`-`(VectorCalculus:-`*`(4, vb^2)))))), VectorCalculus:-`+`(sqrt(VectorCalculus:-`+`(rx^2, ry^2)), sqrt(VectorCalculus:-`+`(VectorCalculus:-`+`(rx, VectorCalculus:-`-`(VectorCalculus:-`*`(2, vb(ex))))^2, VectorCalculus:-`+`(ry, VectorCalculus:-`-`(VectorCalculus:-`*`(2, vb(ey))))^2)))), VectorCalculus:-`+`(VectorCalculus:-`*`(ry, 1/sqrt(VectorCalculus:-`+`(rx^2, ry^2))), VectorCalculus:-`*`(1/2, VectorCalculus:-`*`(VectorCalculus:-`+`(VectorCalculus:-`*`(2, ry), VectorCalculus:-`-`(VectorCalculus:-`*`(4, vb(ey)))), 1/sqrt(VectorCalculus:-`+`(VectorCalculus:-`+`(rx, VectorCalculus:-`-`(VectorCalculus:-`*`(2, vb(ex))))^2, VectorCalculus:-`+`(ry, VectorCalculus:-`-`(VectorCalculus:-`*`(2, vb(ey))))^2)))))), ln(e)), 1/sqrt(VectorCalculus:-`+`(VectorCalculus:-`-`(VectorCalculus:-`+`(sqrt(VectorCalculus:-`+`(rx^2, ry^2)), sqrt(VectorCalculus:-`+`(VectorCalculus:-`+`(rx, VectorCalculus:-`-`(VectorCalculus:-`*`(2, vb(ex))))^2, VectorCalculus:-`+`(ry, VectorCalculus:-`-`(VectorCalculus:-`*`(2, vb(ey))))^2)))^2), VectorCalculus:-`-`(VectorCalculus:-`*`(4, vb^2)))))), VectorCalculus:-`*`(VectorCalculus:-`*`(VectorCalculus:-`*`(VectorCalculus:-`*`(50.00000000, e^VectorCalculus:-`-`(VectorCalculus:-`*`(5.000000000, sqrt(VectorCalculus:-`+`(Rx^2, Ry^2))))), Ry), ln(e)), 1/sqrt(VectorCalculus:-`+`(Rx^2, Ry^2)))), 1, 1, 1, 1, 1, 1, 1, 1, 1], [vx, vy, ex, ey, rx, ry, Ex, Ey, vb, Rx, Ry])

 Calculus problem S(n)=1^2+3^2+5^2+...+(2n-1)^2 ?

Hello everyone,

restart:with(plots):

xNData := ExcelTools:-Import("D:/a.xls"):

L := convert(xNData, listlist);

L := [[1.0, 0.75e-1], [2.0, .1], [3.0, .12], [4.0, .14], [5.0, .16], [6.0, .18], [7.0, .2], [8.0, .22], [9.0, .24], [10.0, .26]]

In the above L for each x we have N. I want to sub a single set of value [x,N] into THE equation NN to get a value for d and repeat the same process for each set of [x,N] to get d.  

NN := -N+(N0B-NB)*(erf((1/2)*x/(sqrt(t)*sqrt(d)))-sqrt(erf((1/2)*alpha/d)))/sqrt(erfc((1/2)*alpha/d))+NB;

alpha:=2*10^(-12):NB:=0.075:N0B:=0.2:t:=360000:

Cheers.

@Care Love, sorry for the trouble. I have edited the question.

a.xls

 

First 1469 1470 1471 1472 1473 1474 1475 Last Page 1471 of 2426