MaplePrimes Questions

Search Questions:

Greetings

I trust that everyone is well here. I have an inquiry regarding the partitioning of a matrix BA, defined on both regular and irregular domains, into three matrices: Ad, Ab, and Ae, such that NewBA = Ad + Ab + Ae. Here, Ad comprises the entries of BA that reside within the domain, Ab includes the elements of BA located on the boundary, and Ae is derived as BA - Ad - Ab for any values of Mx and My. The specifics of matrix BA are contained in the attached document where NewBA constructed manually for different values of Mx and My for better understanding.
Splitting_a_matrix.mw
The attached file contains the matrix BA constructed in a square format. How may the BA matrix be adapted to create an irregular shape, such as a quarter circle?

The red dots indicate the mesh within the domain Ad, while the meshing along the blue line should occur in Ab.

I await your kind reply. Kindly ensure your well-being

I’m getting an error while solving the equations derived from the KKT conditions.
What syntax modifications should I make?
The decision variables are p1 and pr, with two constraints.

sheet: Q1_solve_equation.mw
 

I can't seem to find the "Stop Execution" symbol with the new Maple 2025.1 GUI.  Does anyone know where it went?

I was wondering why there is no longer a separate section for Maple Flow under the tab "Products". As syntax is not always the same between Maple and Maple Flow it would be nice to ask specific questions. Also why is there no suggestion tag for maple flow?

Thank you for any information

I installed a free trial of Maple 2025, but I can't seem to get the (simple) sample test.java script to run using OpenMaple. It compiles fine, but when I try to run it I get a Segmentation Fault error. I've ensured that the environmental variables, as described in the installation documentation, are given properly. The documentation/example in the installation refers to an old version of Maple, so I wondered if perhaps the free trial version does not have all of the updated components? I was hoping to test my project compatibility with OpenMaple before purchasing Maple.

My OS is Ubuntu 24.04, and I'm using Java 21. It would be nice to get everything running in IntelliJ eventually, but for now even trying to run in the terminal is problematic.

In thus manuscript i got some reviewer comment which is asked to simplify this expresion and there is a lot of them maybe if i do by hand i  made a mistake becuase a lot of variable so how i can fix this issue and make thus square root are very simple as they demand

restart

B[2] := 0

0

(1)

K := sqrt(-(1/2)*sqrt(2)*sqrt(lambda*a[5]/a[4])+sqrt(-a[5]/(2*a[4]))*(B[1]*sqrt(-lambda)*sinh(xi*sqrt(-lambda))+B[2]*sqrt(-lambda)*cosh(xi*sqrt(-lambda)))/(B[1]*cosh(xi*sqrt(-lambda))+B[2]*sinh(xi*sqrt(-lambda))+mu/lambda)+sqrt(-(lambda^2*B[1]^2*a[5]-lambda^2*B[2]^2*a[5]-mu^2*a[5])/(2*lambda*a[4]))/(B[1]*cosh(xi*sqrt(-lambda))+B[2]*sinh(xi*sqrt(-lambda))+mu/lambda))*exp(I*(k*(xi+v*tau^alpha/alpha)+w*tau^alpha/alpha+gamma))

(1/2)*(-2*2^(1/2)*(lambda*a[5]/a[4])^(1/2)+2*(-2*a[5]/a[4])^(1/2)*B[1]*(-lambda)^(1/2)*sinh(xi*(-lambda)^(1/2))/(B[1]*cosh(xi*(-lambda)^(1/2))+mu/lambda)+2*(-2*(lambda^2*B[1]^2*a[5]-mu^2*a[5])/(lambda*a[4]))^(1/2)/(B[1]*cosh(xi*(-lambda)^(1/2))+mu/lambda))^(1/2)*exp(I*(k*(xi+v*tau^alpha/alpha)+w*tau^alpha/alpha+gamma))

(2)

simplify(K)

(1/2)*exp(I*((k*v+w)*tau^alpha+alpha*(k*xi+gamma))/alpha)*2^(3/4)*((lambda*(a[5]*(-lambda^2*B[1]^2+mu^2)/(lambda*a[4]))^(1/2)+(-B[1]*cosh(xi*(-lambda)^(1/2))*lambda-mu)*(lambda*a[5]/a[4])^(1/2)+sinh(xi*(-lambda)^(1/2))*lambda*(-a[5]/a[4])^(1/2)*(-lambda)^(1/2)*B[1])/(B[1]*cosh(xi*(-lambda)^(1/2))*lambda+mu))^(1/2)

(3)

subsindets(K, `&*`(rational, anything^(1/2)), proc (u) options operator, arrow; (u^2)^(1/2) end proc)

(1/2)*(-2*2^(1/2)*(lambda*a[5]/a[4])^(1/2)+2*(-2*a[5]/a[4])^(1/2)*B[1]*(-lambda)^(1/2)*sinh(xi*(-lambda)^(1/2))/(B[1]*cosh(xi*(-lambda)^(1/2))+mu/lambda)+2*(-2*(lambda^2*B[1]^2*a[5]-mu^2*a[5])/(lambda*a[4]))^(1/2)/(B[1]*cosh(xi*(-lambda)^(1/2))+mu/lambda))^(1/2)*exp(I*(k*(xi+v*tau^alpha/alpha)+w*tau^alpha/alpha+gamma))

(4)

latex(%)

\frac{\sqrt{-2 \sqrt{2}\, \sqrt{\frac{\lambda  a_{5}}{a_{4}}}+\frac{2 \sqrt{-\frac{2 a_{5}}{a_{4}}}\, B_{1} \sqrt{-\lambda}\, \sinh \left(\xi  \sqrt{-\lambda}\right)}{B_{1} \cosh \left(\xi  \sqrt{-\lambda}\right)+\frac{\mu}{\lambda}}+\frac{2 \sqrt{-\frac{2 \left(\lambda^{2} B_{1}^{2} a_{5}-\mu^{2} a_{5}\right)}{\lambda  a_{4}}}}{B_{1} \cosh \left(\xi  \sqrt{-\lambda}\right)+\frac{\mu}{\lambda}}}\, {\mathrm e}^{\mathrm{I} \left(k \left(\xi +\frac{v \,\tau^{\alpha}}{\alpha}\right)+\frac{w \,\tau^{\alpha}}{\alpha}+\gamma \right)}}{2}

 

KK := sqrt(-(1/2)*sqrt(2)*sqrt(lambda*a[5]/a[4])+sqrt(-a[5]/(2*a[4]))*(B[1]*sqrt(-lambda)*sinh(xi*sqrt(-lambda))+B[2]*sqrt(-lambda)*cosh(xi*sqrt(-lambda)))/(B[1]*cosh(xi*sqrt(-lambda))+B[2]*sinh(xi*sqrt(-lambda))+mu/lambda)+sqrt(-(lambda^2*B[1]^2*a[5]-lambda^2*B[2]^2*a[5]-mu^2*a[5])/(2*lambda*a[4]))/(B[1]*cosh(xi*sqrt(-lambda))+B[2]*sinh(xi*sqrt(-lambda))+mu/lambda))*exp(I*(k*(xi+v*tau^alpha/alpha)+w*tau^alpha/alpha+gamma))

(1/2)*(-2*2^(1/2)*(lambda*a[5]/a[4])^(1/2)+2*(-2*a[5]/a[4])^(1/2)*B[1]*(-lambda)^(1/2)*sinh(xi*(-lambda)^(1/2))/(B[1]*cosh(xi*(-lambda)^(1/2))+mu/lambda)+2*(-2*(lambda^2*B[1]^2*a[5]-mu^2*a[5])/(lambda*a[4]))^(1/2)/(B[1]*cosh(xi*(-lambda)^(1/2))+mu/lambda))^(1/2)*exp((k*(xi+v*tau^alpha/alpha)+w*tau^alpha/alpha+gamma)*I)

(5)

latex(KK)

\frac{\sqrt{-2 \sqrt{2}\, \sqrt{\frac{\lambda  a_{5}}{a_{4}}}+\frac{2 \sqrt{-\frac{2 a_{5}}{a_{4}}}\, B_{1} \sqrt{-\lambda}\, \sinh \left(\xi  \sqrt{-\lambda}\right)}{B_{1} \cosh \left(\xi  \sqrt{-\lambda}\right)+\frac{\mu}{\lambda}}+\frac{2 \sqrt{-\frac{2 \left(\lambda^{2} B_{1}^{2} a_{5}-\mu^{2} a_{5}\right)}{\lambda  a_{4}}}}{B_{1} \cosh \left(\xi  \sqrt{-\lambda}\right)+\frac{\mu}{\lambda}}}\, {\mathrm e}^{\mathrm{I} \left(k \left(\xi +\frac{v \,\tau^{\alpha}}{\alpha}\right)+\frac{w \,\tau^{\alpha}}{\alpha}+\gamma \right)}}{2}

 

NULL

Download simplify.mw

I am trying to factor out I = sqrt(-1) from square roots in my Maple expression by using a substitution f2. However, after applying these substitutions to my final expression, there is no visible change. In addition, the term sqrt(2)/2 + sqrt(2)*I/2 also appear. How can I=sqrt(-1) can be properly factored out from the square roots?

restart

with(Student[Precalculus])

interface(showassumed = 0)

assume(x::real); assume(t::real); assume(lambda1::complex); assume(lambda2::complex); assume(a::real); assume(A__c::real); assume(B1::real); assume(B2::real); assume(delta1::real); assume(delta2::real); assume(`ω__0`::real); assume(g::real); assume(l__0::real)

expr := (0*A__c)*exp(-(2*I)*(A__c^2*g*l__0^2-1/2)*`ω__0`*t)+(2*I)*exp(-I*(A__c^2*g*l__0^2-1/2)*`ω__0`*t)*(sqrt(delta1+I*delta2-sqrt(-A__c^2*g+(delta1+I*delta2)^2))*exp(-2*sqrt(-A__c^2*g+(delta1+I*delta2)^2)*(l__0^2*(I*delta1-delta2)*t*`ω__0`+(1/2)*x))-sqrt(delta1+I*delta2+sqrt(-A__c^2*g+(delta1+I*delta2)^2))*exp(sqrt(-A__c^2*g+(delta1+I*delta2)^2)*(x+(2*I)*`ω__0`*l__0^2*(delta1+I*delta2)*t)))*(sqrt(-delta1+I*delta2-sqrt(-A__c^2*g+(delta1-I*delta2)^2))*exp((2*(l__0^2*(I*delta1+delta2)*t*`ω__0`-(1/2)*x))*sqrt(-A__c^2*g+(delta1-I*delta2)^2))-sqrt(-delta1+I*delta2+sqrt(-A__c^2*g+(delta1-I*delta2)^2))*exp(-(2*(l__0^2*(I*delta1+delta2)*t*`ω__0`-(1/2)*x))*sqrt(-A__c^2*g+(delta1-I*delta2)^2)))*delta2/(exp(I*(A__c^2*g*l__0^2-1/2)*`ω__0`*t)*(((-sqrt(delta1+I*delta2-sqrt(-A__c^2*g+(delta1+I*delta2)^2))*sqrt(-delta1+I*delta2+sqrt(-A__c^2*g+(delta1-I*delta2)^2))-sqrt(delta1+I*delta2+sqrt(-A__c^2*g+(delta1+I*delta2)^2))*sqrt(-delta1+I*delta2-sqrt(-A__c^2*g+(delta1-I*delta2)^2)))*exp((2*(l__0^2*(I*delta1+delta2)*t*`ω__0`-(1/2)*x))*sqrt(-A__c^2*g+(delta1-I*delta2)^2))+exp(-(2*(l__0^2*(I*delta1+delta2)*t*`ω__0`-(1/2)*x))*sqrt(-A__c^2*g+(delta1-I*delta2)^2))*(sqrt(delta1+I*delta2-sqrt(-A__c^2*g+(delta1+I*delta2)^2))*sqrt(-delta1+I*delta2-sqrt(-A__c^2*g+(delta1-I*delta2)^2))+sqrt(-delta1+I*delta2+sqrt(-A__c^2*g+(delta1-I*delta2)^2))*sqrt(delta1+I*delta2+sqrt(-A__c^2*g+(delta1+I*delta2)^2))))*exp(-2*sqrt(-A__c^2*g+(delta1+I*delta2)^2)*(l__0^2*(I*delta1-delta2)*t*`ω__0`+(1/2)*x))+exp(sqrt(-A__c^2*g+(delta1+I*delta2)^2)*(x+(2*I)*`ω__0`*l__0^2*(delta1+I*delta2)*t))*((sqrt(delta1+I*delta2-sqrt(-A__c^2*g+(delta1+I*delta2)^2))*sqrt(-delta1+I*delta2-sqrt(-A__c^2*g+(delta1-I*delta2)^2))+sqrt(-delta1+I*delta2+sqrt(-A__c^2*g+(delta1-I*delta2)^2))*sqrt(delta1+I*delta2+sqrt(-A__c^2*g+(delta1+I*delta2)^2)))*exp((2*(l__0^2*(I*delta1+delta2)*t*`ω__0`-(1/2)*x))*sqrt(-A__c^2*g+(delta1-I*delta2)^2))-exp(-(2*(l__0^2*(I*delta1+delta2)*t*`ω__0`-(1/2)*x))*sqrt(-A__c^2*g+(delta1-I*delta2)^2))*(sqrt(delta1+I*delta2-sqrt(-A__c^2*g+(delta1+I*delta2)^2))*sqrt(-delta1+I*delta2+sqrt(-A__c^2*g+(delta1-I*delta2)^2))+sqrt(delta1+I*delta2+sqrt(-A__c^2*g+(delta1+I*delta2)^2))*sqrt(-delta1+I*delta2-sqrt(-A__c^2*g+(delta1-I*delta2)^2)))))*(-delta1+I*delta2)*(delta1+I*delta2))

(2*I)*exp(-I*(A__c^2*g*l__0^2-1/2)*omega__0*t)*((delta1+I*delta2-(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*exp(-2*(-A__c^2*g+(delta1+I*delta2)^2)^(1/2)*(l__0^2*(I*delta1-delta2)*t*omega__0+(1/2)*x))-(delta1+I*delta2+(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*exp((-A__c^2*g+(delta1+I*delta2)^2)^(1/2)*(x+(2*I)*omega__0*l__0^2*(delta1+I*delta2)*t)))*((-delta1+I*delta2-(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)*exp(2*(l__0^2*(I*delta1+delta2)*t*omega__0-(1/2)*x)*(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))-(-delta1+I*delta2+(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)*exp(-2*(l__0^2*(I*delta1+delta2)*t*omega__0-(1/2)*x)*(-A__c^2*g+(delta1-I*delta2)^2)^(1/2)))*delta2/(exp(I*(A__c^2*g*l__0^2-1/2)*omega__0*t)*(((-(delta1+I*delta2-(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*(-delta1+I*delta2+(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)-(delta1+I*delta2+(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*(-delta1+I*delta2-(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2))*exp(2*(l__0^2*(I*delta1+delta2)*t*omega__0-(1/2)*x)*(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))+exp(-2*(l__0^2*(I*delta1+delta2)*t*omega__0-(1/2)*x)*(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))*((delta1+I*delta2-(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*(-delta1+I*delta2-(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)+(-delta1+I*delta2+(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)*(delta1+I*delta2+(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)))*exp(-2*(-A__c^2*g+(delta1+I*delta2)^2)^(1/2)*(l__0^2*(I*delta1-delta2)*t*omega__0+(1/2)*x))+exp((-A__c^2*g+(delta1+I*delta2)^2)^(1/2)*(x+(2*I)*omega__0*l__0^2*(delta1+I*delta2)*t))*(((delta1+I*delta2-(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*(-delta1+I*delta2-(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)+(-delta1+I*delta2+(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)*(delta1+I*delta2+(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2))*exp(2*(l__0^2*(I*delta1+delta2)*t*omega__0-(1/2)*x)*(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))-exp(-2*(l__0^2*(I*delta1+delta2)*t*omega__0-(1/2)*x)*(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))*((delta1+I*delta2-(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*(-delta1+I*delta2+(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)+(delta1+I*delta2+(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*(-delta1+I*delta2-(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2))))*(I*delta2-delta1)*(delta1+I*delta2))

(1)

`assuming`([simplify(combine(simplify(convert(combine(eval(expr, delta1 = 0)), trigh))))], [delta2 > g*A__c and g*A__c > 0])

(cos((2*A__c^2*g*l__0^2-1)*omega__0*t)-I*sin((2*A__c^2*g*l__0^2-1)*omega__0*t))*(-I*cosh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*(-A__c^2*g-delta2^2)^(1/2))*delta2+(I*delta2-(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(I*delta2+(-A__c^2*g-delta2^2)^(1/2))^(1/2)+sinh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*(-A__c^2*g-delta2^2)^(1/2))*(-A__c^2*g-delta2^2)^(1/2))/(delta2*(I*(I*delta2-(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(I*delta2+(-A__c^2*g-delta2^2)^(1/2))^(1/2)*cosh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*(-A__c^2*g-delta2^2)^(1/2))+delta2))

(2)

f1 := simplify(convert(numer(%),exp))/factor(denom(%))

I*exp(-(2*I)*(A__c^2*g*l__0^2-1/2)*omega__0*t)*(-I*cosh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*(-A__c^2*g-delta2^2)^(1/2))*delta2+(I*delta2-(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(I*delta2+(-A__c^2*g-delta2^2)^(1/2))^(1/2)+sinh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*(-A__c^2*g-delta2^2)^(1/2))*(-A__c^2*g-delta2^2)^(1/2))/((-(I*delta2-(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(I*delta2+(-A__c^2*g-delta2^2)^(1/2))^(1/2)*cosh(2*(2*delta2*l__0^2*t*omega__0-x)*(-A__c^2*g-delta2^2)^(1/2))+I*delta2)*delta2)

(3)

sqrtterms := indets(%, sqrt)

{(I*delta2-(-A__c^2*g-delta2^2)^(1/2))^(1/2), (I*delta2+(-A__c^2*g-delta2^2)^(1/2))^(1/2), (-A__c^2*g-delta2^2)^(1/2)}

(4)

f2 := subs({sqrtterms[1] = sqrt(I)*sqrt(delta2-sqrt(-A__c^2*g-delta2^2)/(I)), sqrtterms[2] = sqrt(I)*sqrt(delta2+sqrt(-A__c^2*g-delta2^2)/(I)), sqrtterms[3] = sqrt(I)*sqrt(A__c^2*g+delta2^2)})

{(I*delta2-(-A__c^2*g-delta2^2)^(1/2))^(1/2) = ((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2), (I*delta2+(-A__c^2*g-delta2^2)^(1/2))^(1/2) = ((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2), (-A__c^2*g-delta2^2)^(1/2) = ((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*(A__c^2*g+delta2^2)^(1/2)}

(5)

f3 := subs(f2, f1)

I*exp(-(2*I)*(A__c^2*g*l__0^2-1/2)*omega__0*t)*(-I*cosh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*(A__c^2*g+delta2^2)^(1/2))*delta2+((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))^2*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)+sinh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*(A__c^2*g+delta2^2)^(1/2))*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*(A__c^2*g+delta2^2)^(1/2))/((-((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))^2*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*cosh(2*(2*delta2*l__0^2*t*omega__0-x)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*(A__c^2*g+delta2^2)^(1/2))+I*delta2)*delta2)

(6)

f4 := subs({sqrt(A__c^2*g+delta2^2) = Z}, f3)

I*exp(-(2*I)*(A__c^2*g*l__0^2-1/2)*omega__0*t)*(-I*cosh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*Z)*delta2+((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))^2*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)+sinh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*Z)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*Z)/((-((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))^2*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*cosh(2*(2*delta2*l__0^2*t*omega__0-x)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*Z)+I*delta2)*delta2)

(7)

f4f := A__c*exp(-(2*I)*(A__c^2*g*l__0^2-1/2)*`ω__0`*t)+f4

A__c*exp(-(2*I)*(A__c^2*g*l__0^2-1/2)*omega__0*t)+I*exp(-(2*I)*(A__c^2*g*l__0^2-1/2)*omega__0*t)*(-I*cosh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*Z)*delta2+((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))^2*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)+sinh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*Z)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*Z)/((-((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))^2*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*cosh(2*(2*delta2*l__0^2*t*omega__0-x)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*Z)+I*delta2)*delta2)

(8)

f4fnl := subs({I = -I, x = -x}, f4f)

A__c*exp((2*I)*(A__c^2*g*l__0^2-1/2)*omega__0*t)-I*exp((2*I)*(A__c^2*g*l__0^2-1/2)*omega__0*t)*(I*cosh(4*(l__0^2*delta2*t*omega__0+(1/2)*x)*((1/2)*2^(1/2)-((1/2)*I)*2^(1/2))*Z)*delta2+((1/2)*2^(1/2)-((1/2)*I)*2^(1/2))^2*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)+sinh(4*(l__0^2*delta2*t*omega__0+(1/2)*x)*((1/2)*2^(1/2)-((1/2)*I)*2^(1/2))*Z)*((1/2)*2^(1/2)-((1/2)*I)*2^(1/2))*Z)/((-((1/2)*2^(1/2)-((1/2)*I)*2^(1/2))^2*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*cosh(2*(2*delta2*l__0^2*t*omega__0+x)*((1/2)*2^(1/2)-((1/2)*I)*2^(1/2))*Z)-I*delta2)*delta2)

(9)

Mdensity := simplify(f4f*f4fnl)

(1/4)*(2*(1-I*A__c*cosh((1-I)*(2*delta2*l__0^2*t*omega__0+x)*2^(1/2)*Z)*delta2)*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)-2*cosh((1-I)*(2*delta2*l__0^2*t*omega__0+x)*2^(1/2)*Z)*delta2+(1+I)*2^(1/2)*Z*sinh((1-I)*(2*delta2*l__0^2*t*omega__0+x)*2^(1/2)*Z)+(2*I)*A__c*delta2^2)*(2*(I*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*A__c-1)*delta2*cosh((1+I)*(2*delta2*l__0^2*t*omega__0-x)*2^(1/2)*Z)+(1-I)*2^(1/2)*Z*sinh((1+I)*(2*delta2*l__0^2*t*omega__0-x)*2^(1/2)*Z)-(2*I)*A__c*delta2^2+2*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2))/(delta2^2*((delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*cosh((1+I)*(2*delta2*l__0^2*t*omega__0-x)*2^(1/2)*Z)-delta2)*((delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*cosh((1-I)*(2*delta2*l__0^2*t*omega__0+x)*2^(1/2)*Z)-delta2))

(10)

NULL

Download simplify.mw

Using Eigenvalues and Eigenvectors commands with symmetric matrices (so real eigenvalues) I get something like

Can I avoid "+0.I"?
Thanks

...flies around in the spatial Cartesian coordinate system and impacts the coordinate planes xy, xz, and yz with exactly one impact. This creates circular impressions on the coordinate planes in this order, with the radii r1, r2, and r3, which are assumed to be known. From these, the sphere's radius r and the coordinates of its center can be determined?

Is there a short-cut for jumping to a specific output label in a Maple worksheet?

I have a Maple worksheet with over 200 labels:  (1), (2), ....., (236) etc?

"Find" does not seem to work.

Thanks

Frank Garvan

In the 3D figure, the z-axis currently extends only to zero; please extend it to include positive values. Also help needed in setting the optimal point which is not clearly visible now—how to adjust the view and labeling to highlight only its z-value. How can we Improve the overall clarity and positioning of the figure to enhance visual readability.

Q_figure.mw

Download Q_figure.mw

How to solve two boundary problems in one graph not getting graphs shown in pdf
symetry_paper_work.mw
symmetry_graphs_pdf.pdf

How to get table values 

i  can determine the pdes by one variable which is work so good but in some of the pdes i have two function i can separate by hand but how i can do by maple?

Download linear.mw

i did a lot of trail to avoid for find my parameter in the last step of that i get this `[Length of output exceeds limit of 1000000]` and i don't know how to fix it i need to find that parameter but when i do substitution  is said this there is any way for hundle this situation 

help-parameter.mw

1 2 3 4 5 6 7 Last Page 1 of 2427