MaplePrimes Questions

I have Maple 2016 on Ubuntu 16.04.  I get an error message when attempting to plot with an x11 device, that means I have missing fonts.

I do not get this error message on Ubuntu14.04, so, I think the difference is in fonts installed.

plotsetup(x11)

> plot([sin(x),cos(x)],x=-Pi..Pi);
> Maple X driver failure:BadName (named color or font does not exist)Warning: Cannot convert string "-adobe-helvetica-bold-r-normal--14-*" to type FontStruct
Warning: Cannot convert string "-adobe-helvetica-medium-r-normal--14-*" to type FontStruct

I have xfonts-100dpi and xfonts-75dpi installed.

Any idea what fonts I need to fix this?

 

Tom Dean

Hi Maple People,

I have this Maple command -

printf("%g",p)

where p is a variable I assign.  My problem is that I want to put a new line in the display.

What is the appropriate command?

Regards,

Matt

 

 

Hi all,

I have three points in 3d space say A1=[a11, a12, a13]; A2=[a21, a22, a23] and A3=[a31, a32, a33]. I want to fill the triangle formed by these points. How can I do that?

Thanks is advance.

Hi all,

I have a 3D graph and when I right click on the surface, under style, I can see the option of contour. When I click on that I can see some contour associated with the surface. I want maple to show the values for each contour when I observe it from the top . I want to copy and paste some surfaces in a same figure and campare the contours.

 

Thank you

 

 

 

rather than last time saved file result?

When I open maple script file, it display the result which file created.

however, not the latest result 

it need to move cursor to the end of script and press enter again.


I wish to delete the rows that have imaginery components from my results Matrix. Have tried many variants of for loops etc.

restart

``

``

interface(displayprecision = 3)

3

(1)

(2)

``

interface(rtablesize = 81)

10

(3)

``

``

Ans := Matrix(17, 15, {(1, 1) = `-`, (1, 2) = u0, (1, 3) = u1, (1, 4) = u2, (1, 5) = u3, (1, 6) = P*x, (1, 7) = Py, (1, 8) = Pz, (1, 9) = g0, (1, 10) = g1, (1, 11) = g2, (1, 12) = g3, (1, 13) = u^2, (1, 14) = g^2, (1, 15) = P, (2, 1) = 1, (2, 2) = -.516501806300516366332207827845271720295699875, (2, 3) = .157087667438024041386330713987768482051008262*I, (2, 4) = .113781789011852812312696505223578179747798329*I, (2, 5) = -.877979905726868500805204485093148911811362591, (2, 6) = -45.5583959992909648360043286735679679113587631, (2, 7) = -49.2104104577498887775211368820566392860712299, (2, 8) = -893.5067837*I, (2, 9) = -.866146675707479268632063873487527071333386044, (2, 10) = 0.392015486681650570173437868256055772345022977e-1*I, (2, 11) = -.1411657646*I, (2, 12) = .520820958366521078324036803446408915170112964, (2, 13) = .999999999999999999999999999999999999997268842, (2, 14) = .999999999999999999999999999999999999974976375, (2, 15) = 890.986610791943203054869284606448158021303178*I, (3, 1) = 0, (3, 2) = -.516501806300516366332207827845271720295699875, (3, 3) = -.1570876674*I, (3, 4) = -.1137817890*I, (3, 5) = -.877979905726868500805204485093148911811362591, (3, 6) = 0, (3, 7) = 0, (3, 8) = 0, (3, 9) = 0, (3, 10) = 0, (3, 11) = 0, (3, 12) = 0, (3, 13) = 0, (3, 14) = 0, (3, 15) = 0, (4, 1) = 2, (4, 2) = 1.37465842397864539997343521056744950913464373, (4, 3) = -.4720070715*I, (4, 4) = 1.04887251334709968989772260444378754238846281*I, (4, 5) = -.658208509656740520048240372814155977066034431, (4, 6) = -139.935858043713569770172241394940432701557933, (4, 7) = 1009.16689416507143999697715965318783801532828, (4, 8) = 35.050637050173061427545252165933711014164793*I, (4, 9) = -1.081758215*I, (4, 10) = -.805172606177376737844957657938233921696306905, (4, 11) = 1.28822588438750284892199202326992770781607054, (4, 12) = .370982506039653923963789326359229665746676298*I, (4, 13) = 1.00000000000000000000000000000000000000004448, (4, 14) = 1.00000000000000000000000000000000000002308483, (4, 15) = 1018.21968036744599747318369866423941656487034, (5, 1) = 0, (5, 2) = 1.37465842397864539997343521056744950913464373, (5, 3) = .472007071498869469711464480852290076392886818*I, (5, 4) = -1.048872513*I, (5, 5) = -.658208509656740520048240372814155977066034431, (5, 6) = 0, (5, 7) = 0, (5, 8) = 0, (5, 9) = 0, (5, 10) = 0, (5, 11) = 0, (5, 12) = 0, (5, 13) = 0, (5, 14) = 0, (5, 15) = 0, (6, 1) = 3, (6, 2) = .888607277416217966051928947403779522572804242, (6, 3) = -.106822611437208274601612056689973427508887756, (6, 4) = .227628951666705815052303897780904267397418654, (6, 5) = -.383602784885339918445575993340862111408067307, (6, 6) = -33.2619224164850716022540679651061384838837392, (6, 7) = -70.5221377558306752001316338827006032187340768, (6, 8) = 520.235208378859672763343647578296600919428272, (6, 9) = .403127155352863813666160452061241985268802920, (6, 10) = -.229875128453580499649930605383626391667210087, (6, 11) = -.249025243344440313757976839460134436215711022, (6, 12) = .850077849442508503270095108095866473994329709, (6, 13) = .999999999999999999999999999999999999999999990, (6, 14) = 1.00000000000000000000000000000000000000001494, (6, 15) = 526.046005054204528169704406776278260629227147, (7, 1) = 0, (7, 2) = .888607277416217966051928947403779522572804242, (7, 3) = .106822611437208274601612056689973427508887756, (7, 4) = -.227628951666705815052303897780904267397418654, (7, 5) = -.383602784885339918445575993340862111408067307, (7, 6) = 0, (7, 7) = 0, (7, 8) = 0, (7, 9) = 0, (7, 10) = 0, (7, 11) = 0, (7, 12) = 0, (7, 13) = 0, (7, 14) = 0, (7, 15) = 0, (8, 1) = 4, (8, 2) = .771395089635626888037058585282289072153672569, (8, 3) = -.251315638632409886572894533969222074089643996, (8, 4) = .494467079738422222368894560870844350373447897, (8, 5) = -.311917252680552965184041884461266972741091408, (8, 6) = -35.3773974809076144493333628813387306219066392, (8, 7) = -261.955262605587133808935304231369552994540307, (8, 8) = 267.817639506339708440220037786669249266668237, (8, 9) = .542590138401669145144489319765760630956089296, (8, 10) = -.207306657051038538831939399741694104211987188, (8, 11) = -.745192226522038608473536679495983480516139685, (8, 12) = .327579665398674149197429570862493923635921752, (8, 13) = 1.00000000000000000000000000000000000000000004, (8, 14) = 1.00000000000000000000000000000000000000000070, (8, 15) = 376.295638946336949362327994692547262453058894, (9, 1) = 0, (9, 2) = .771395089635626888037058585282289072153672569, (9, 3) = .251315638632409886572894533969222074089643996, (9, 4) = -.494467079738422222368894560870844350373447897, (9, 5) = -.311917252680552965184041884461266972741091408, (9, 6) = 0, (9, 7) = 0, (9, 8) = 0, (9, 9) = 0, (9, 10) = 0, (9, 11) = 0, (9, 12) = 0, (9, 13) = 0, (9, 14) = 0, (9, 15) = 0, (10, 1) = 5, (10, 2) = -.771395089635626888037058585282289072153672569, (10, 3) = -.251315638632409886572894533969222074089643996, (10, 4) = .494467079738422222368894560870844350373447897, (10, 5) = .311917252680552965184041884461266972741091408, (10, 6) = -35.3773974809076144493333628813387306219066392, (10, 7) = -261.955262605587133808935304231369552994540307, (10, 8) = -267.817639506339708440220037786669249266668237, (10, 9) = .542590138401669145144489319765760630956089296, (10, 10) = .207306657051038538831939399741694104211987188, (10, 11) = .745192226522038608473536679495983480516139685, (10, 12) = .327579665398674149197429570862493923635921752, (10, 13) = 1.00000000000000000000000000000000000000000004, (10, 14) = 1.00000000000000000000000000000000000000000070, (10, 15) = 376.295638946336949362327994692547262453058894, (11, 1) = 0, (11, 2) = -.771395089635626888037058585282289072153672569, (11, 3) = .251315638632409886572894533969222074089643996, (11, 4) = -.494467079738422222368894560870844350373447897, (11, 5) = .311917252680552965184041884461266972741091408, (11, 6) = 0, (11, 7) = 0, (11, 8) = 0, (11, 9) = 0, (11, 10) = 0, (11, 11) = 0, (11, 12) = 0, (11, 13) = 0, (11, 14) = 0, (11, 15) = 0, (12, 1) = 6, (12, 2) = -.888607277416217966051928947403779522572804242, (12, 3) = -.106822611437208274601612056689973427508887756, (12, 4) = .227628951666705815052303897780904267397418654, (12, 5) = .383602784885339918445575993340862111408067307, (12, 6) = -33.2619224164850716022540679651061384838837392, (12, 7) = -70.5221377558306752001316338827006032187340768, (12, 8) = -520.235208378859672763343647578296600919428272, (12, 9) = .403127155352863813666160452061241985268802920, (12, 10) = .229875128453580499649930605383626391667210087, (12, 11) = .249025243344440313757976839460134436215711022, (12, 12) = .850077849442508503270095108095866473994329709, (12, 13) = .999999999999999999999999999999999999999999990, (12, 14) = 1.00000000000000000000000000000000000000001494, (12, 15) = 526.046005054204528169704406776278260629227147, (13, 1) = 0, (13, 2) = -.888607277416217966051928947403779522572804242, (13, 3) = .106822611437208274601612056689973427508887756, (13, 4) = -.227628951666705815052303897780904267397418654, (13, 5) = .383602784885339918445575993340862111408067307, (13, 6) = 0, (13, 7) = 0, (13, 8) = 0, (13, 9) = 0, (13, 10) = 0, (13, 11) = 0, (13, 12) = 0, (13, 13) = 0, (13, 14) = 0, (13, 15) = 0, (14, 1) = 7, (14, 2) = -1.37465842397864539997343521056744950913464373, (14, 3) = -.4720070715*I, (14, 4) = 1.04887251334709968989772260444378754238846281*I, (14, 5) = .658208509656740520048240372814155977066034431, (14, 6) = -139.935858043713569770172241394940432701557933, (14, 7) = 1009.16689416507143999697715965318783801532828, (14, 8) = -35.05063705*I, (14, 9) = -1.081758215*I, (14, 10) = .805172606177376737844957657938233921696306905, (14, 11) = -1.28822588438750284892199202326992770781607054, (14, 12) = .370982506039653923963789326359229665746676298*I, (14, 13) = 1.00000000000000000000000000000000000000004448, (14, 14) = 1.00000000000000000000000000000000000002308483, (14, 15) = 1018.21968036744599747318369866423941656487034, (15, 1) = 0, (15, 2) = -1.37465842397864539997343521056744950913464373, (15, 3) = .472007071498869469711464480852290076392886818*I, (15, 4) = -1.048872513*I, (15, 5) = .658208509656740520048240372814155977066034431, (15, 6) = 0, (15, 7) = 0, (15, 8) = 0, (15, 9) = 0, (15, 10) = 0, (15, 11) = 0, (15, 12) = 0, (15, 13) = 0, (15, 14) = 0, (15, 15) = 0, (16, 1) = 8, (16, 2) = .516501806300516366332207827845271720295699875, (16, 3) = .157087667438024041386330713987768482051008262*I, (16, 4) = .113781789011852812312696505223578179747798329*I, (16, 5) = .877979905726868500805204485093148911811362591, (16, 6) = -45.5583959992909648360043286735679679113587631, (16, 7) = -49.2104104577498887775211368820566392860712299, (16, 8) = 893.506783720169698656724304667952267191687315*I, (16, 9) = -.866146675707479268632063873487527071333386044, (16, 10) = -0.3920154867e-1*I, (16, 11) = .141165764599481508540163197537118257205129796*I, (16, 12) = .520820958366521078324036803446408915170112964, (16, 13) = .999999999999999999999999999999999999997268842, (16, 14) = .999999999999999999999999999999999999974976375, (16, 15) = 890.986610791943203054869284606448158021303178*I, (17, 1) = 0, (17, 2) = .516501806300516366332207827845271720295699875, (17, 3) = -.1570876674*I, (17, 4) = -.1137817890*I, (17, 5) = .877979905726868500805204485093148911811362591, (17, 6) = 0, (17, 7) = 0, (17, 8) = 0, (17, 9) = 0, (17, 10) = 0, (17, 11) = 0, (17, 12) = 0, (17, 13) = 0, (17, 14) = 0, (17, 15) = 0})

Ans := Matrix(17, 15, {(1, 1) = `-`, (1, 2) = u0, (1, 3) = u1, (1, 4) = u2, (1, 5) = u3, (1, 6) = P*x, (1, 7) = Py, (1, 8) = Pz, (1, 9) = g0, (1, 10) = g1, (1, 11) = g2, (1, 12) = g3, (1, 13) = u^2, (1, 14) = g^2, (1, 15) = P, (2, 1) = 1, (2, 2) = -.516501806300516366332207827845271720295699875, (2, 3) = .157087667438024041386330713987768482051008262*I, (2, 4) = .113781789011852812312696505223578179747798329*I, (2, 5) = -.877979905726868500805204485093148911811362591, (2, 6) = -45.5583959992909648360043286735679679113587631, (2, 7) = -49.2104104577498887775211368820566392860712299, (2, 8) = -893.5067837*I, (2, 9) = -.866146675707479268632063873487527071333386044, (2, 10) = 0.392015486681650570173437868256055772345022977e-1*I, (2, 11) = -.1411657646*I, (2, 12) = .520820958366521078324036803446408915170112964, (2, 13) = .999999999999999999999999999999999999997268842, (2, 14) = .999999999999999999999999999999999999974976375, (2, 15) = 890.986610791943203054869284606448158021303178*I, (3, 1) = 0, (3, 2) = -.516501806300516366332207827845271720295699875, (3, 3) = -.1570876674*I, (3, 4) = -.1137817890*I, (3, 5) = -.877979905726868500805204485093148911811362591, (3, 6) = 0, (3, 7) = 0, (3, 8) = 0, (3, 9) = 0, (3, 10) = 0, (3, 11) = 0, (3, 12) = 0, (3, 13) = 0, (3, 14) = 0, (3, 15) = 0, (4, 1) = 2, (4, 2) = 1.37465842397864539997343521056744950913464373, (4, 3) = -.4720070715*I, (4, 4) = 1.04887251334709968989772260444378754238846281*I, (4, 5) = -.658208509656740520048240372814155977066034431, (4, 6) = -139.935858043713569770172241394940432701557933, (4, 7) = 1009.16689416507143999697715965318783801532828, (4, 8) = 35.050637050173061427545252165933711014164793*I, (4, 9) = -1.081758215*I, (4, 10) = -.805172606177376737844957657938233921696306905, (4, 11) = 1.28822588438750284892199202326992770781607054, (4, 12) = .370982506039653923963789326359229665746676298*I, (4, 13) = 1.00000000000000000000000000000000000000004448, (4, 14) = 1.00000000000000000000000000000000000002308483, (4, 15) = 1018.21968036744599747318369866423941656487034, (5, 1) = 0, (5, 2) = 1.37465842397864539997343521056744950913464373, (5, 3) = .472007071498869469711464480852290076392886818*I, (5, 4) = -1.048872513*I, (5, 5) = -.658208509656740520048240372814155977066034431, (5, 6) = 0, (5, 7) = 0, (5, 8) = 0, (5, 9) = 0, (5, 10) = 0, (5, 11) = 0, (5, 12) = 0, (5, 13) = 0, (5, 14) = 0, (5, 15) = 0, (6, 1) = 3, (6, 2) = .888607277416217966051928947403779522572804242, (6, 3) = -.106822611437208274601612056689973427508887756, (6, 4) = .227628951666705815052303897780904267397418654, (6, 5) = -.383602784885339918445575993340862111408067307, (6, 6) = -33.2619224164850716022540679651061384838837392, (6, 7) = -70.5221377558306752001316338827006032187340768, (6, 8) = 520.235208378859672763343647578296600919428272, (6, 9) = .403127155352863813666160452061241985268802920, (6, 10) = -.229875128453580499649930605383626391667210087, (6, 11) = -.249025243344440313757976839460134436215711022, (6, 12) = .850077849442508503270095108095866473994329709, (6, 13) = .999999999999999999999999999999999999999999990, (6, 14) = 1.00000000000000000000000000000000000000001494, (6, 15) = 526.046005054204528169704406776278260629227147, (7, 1) = 0, (7, 2) = .888607277416217966051928947403779522572804242, (7, 3) = .106822611437208274601612056689973427508887756, (7, 4) = -.227628951666705815052303897780904267397418654, (7, 5) = -.383602784885339918445575993340862111408067307, (7, 6) = 0, (7, 7) = 0, (7, 8) = 0, (7, 9) = 0, (7, 10) = 0, (7, 11) = 0, (7, 12) = 0, (7, 13) = 0, (7, 14) = 0, (7, 15) = 0, (8, 1) = 4, (8, 2) = .771395089635626888037058585282289072153672569, (8, 3) = -.251315638632409886572894533969222074089643996, (8, 4) = .494467079738422222368894560870844350373447897, (8, 5) = -.311917252680552965184041884461266972741091408, (8, 6) = -35.3773974809076144493333628813387306219066392, (8, 7) = -261.955262605587133808935304231369552994540307, (8, 8) = 267.817639506339708440220037786669249266668237, (8, 9) = .542590138401669145144489319765760630956089296, (8, 10) = -.207306657051038538831939399741694104211987188, (8, 11) = -.745192226522038608473536679495983480516139685, (8, 12) = .327579665398674149197429570862493923635921752, (8, 13) = 1.00000000000000000000000000000000000000000004, (8, 14) = 1.00000000000000000000000000000000000000000070, (8, 15) = 376.295638946336949362327994692547262453058894, (9, 1) = 0, (9, 2) = .771395089635626888037058585282289072153672569, (9, 3) = .251315638632409886572894533969222074089643996, (9, 4) = -.494467079738422222368894560870844350373447897, (9, 5) = -.311917252680552965184041884461266972741091408, (9, 6) = 0, (9, 7) = 0, (9, 8) = 0, (9, 9) = 0, (9, 10) = 0, (9, 11) = 0, (9, 12) = 0, (9, 13) = 0, (9, 14) = 0, (9, 15) = 0, (10, 1) = 5, (10, 2) = -.771395089635626888037058585282289072153672569, (10, 3) = -.251315638632409886572894533969222074089643996, (10, 4) = .494467079738422222368894560870844350373447897, (10, 5) = .311917252680552965184041884461266972741091408, (10, 6) = -35.3773974809076144493333628813387306219066392, (10, 7) = -261.955262605587133808935304231369552994540307, (10, 8) = -267.817639506339708440220037786669249266668237, (10, 9) = .542590138401669145144489319765760630956089296, (10, 10) = .207306657051038538831939399741694104211987188, (10, 11) = .745192226522038608473536679495983480516139685, (10, 12) = .327579665398674149197429570862493923635921752, (10, 13) = 1.00000000000000000000000000000000000000000004, (10, 14) = 1.00000000000000000000000000000000000000000070, (10, 15) = 376.295638946336949362327994692547262453058894, (11, 1) = 0, (11, 2) = -.771395089635626888037058585282289072153672569, (11, 3) = .251315638632409886572894533969222074089643996, (11, 4) = -.494467079738422222368894560870844350373447897, (11, 5) = .311917252680552965184041884461266972741091408, (11, 6) = 0, (11, 7) = 0, (11, 8) = 0, (11, 9) = 0, (11, 10) = 0, (11, 11) = 0, (11, 12) = 0, (11, 13) = 0, (11, 14) = 0, (11, 15) = 0, (12, 1) = 6, (12, 2) = -.888607277416217966051928947403779522572804242, (12, 3) = -.106822611437208274601612056689973427508887756, (12, 4) = .227628951666705815052303897780904267397418654, (12, 5) = .383602784885339918445575993340862111408067307, (12, 6) = -33.2619224164850716022540679651061384838837392, (12, 7) = -70.5221377558306752001316338827006032187340768, (12, 8) = -520.235208378859672763343647578296600919428272, (12, 9) = .403127155352863813666160452061241985268802920, (12, 10) = .229875128453580499649930605383626391667210087, (12, 11) = .249025243344440313757976839460134436215711022, (12, 12) = .850077849442508503270095108095866473994329709, (12, 13) = .999999999999999999999999999999999999999999990, (12, 14) = 1.00000000000000000000000000000000000000001494, (12, 15) = 526.046005054204528169704406776278260629227147, (13, 1) = 0, (13, 2) = -.888607277416217966051928947403779522572804242, (13, 3) = .106822611437208274601612056689973427508887756, (13, 4) = -.227628951666705815052303897780904267397418654, (13, 5) = .383602784885339918445575993340862111408067307, (13, 6) = 0, (13, 7) = 0, (13, 8) = 0, (13, 9) = 0, (13, 10) = 0, (13, 11) = 0, (13, 12) = 0, (13, 13) = 0, (13, 14) = 0, (13, 15) = 0, (14, 1) = 7, (14, 2) = -1.37465842397864539997343521056744950913464373, (14, 3) = -.4720070715*I, (14, 4) = 1.04887251334709968989772260444378754238846281*I, (14, 5) = .658208509656740520048240372814155977066034431, (14, 6) = -139.935858043713569770172241394940432701557933, (14, 7) = 1009.16689416507143999697715965318783801532828, (14, 8) = -35.05063705*I, (14, 9) = -1.081758215*I, (14, 10) = .805172606177376737844957657938233921696306905, (14, 11) = -1.28822588438750284892199202326992770781607054, (14, 12) = .370982506039653923963789326359229665746676298*I, (14, 13) = 1.00000000000000000000000000000000000000004448, (14, 14) = 1.00000000000000000000000000000000000002308483, (14, 15) = 1018.21968036744599747318369866423941656487034, (15, 1) = 0, (15, 2) = -1.37465842397864539997343521056744950913464373, (15, 3) = .472007071498869469711464480852290076392886818*I, (15, 4) = -1.048872513*I, (15, 5) = .658208509656740520048240372814155977066034431, (15, 6) = 0, (15, 7) = 0, (15, 8) = 0, (15, 9) = 0, (15, 10) = 0, (15, 11) = 0, (15, 12) = 0, (15, 13) = 0, (15, 14) = 0, (15, 15) = 0, (16, 1) = 8, (16, 2) = .516501806300516366332207827845271720295699875, (16, 3) = .157087667438024041386330713987768482051008262*I, (16, 4) = .113781789011852812312696505223578179747798329*I, (16, 5) = .877979905726868500805204485093148911811362591, (16, 6) = -45.5583959992909648360043286735679679113587631, (16, 7) = -49.2104104577498887775211368820566392860712299, (16, 8) = 893.506783720169698656724304667952267191687315*I, (16, 9) = -.866146675707479268632063873487527071333386044, (16, 10) = -0.3920154867e-1*I, (16, 11) = .141165764599481508540163197537118257205129796*I, (16, 12) = .520820958366521078324036803446408915170112964, (16, 13) = .999999999999999999999999999999999999997268842, (16, 14) = .999999999999999999999999999999999999974976375, (16, 15) = 890.986610791943203054869284606448158021303178*I, (17, 1) = 0, (17, 2) = .516501806300516366332207827845271720295699875, (17, 3) = -.1570876674*I, (17, 4) = -.1137817890*I, (17, 5) = .877979905726868500805204485093148911811362591, (17, 6) = 0, (17, 7) = 0, (17, 8) = 0, (17, 9) = 0, (17, 10) = 0, (17, 11) = 0, (17, 12) = 0, (17, 13) = 0, (17, 14) = 0, (17, 15) = 0})

(4)

``

(5)

"seq( if 'has'(Ans(n,1..15) ,Im<>0) then DeleteRow (Ans(n) )end if,n=2..17)"

Error, invalid argument sequence

"seq( if 'has'(Ans(n,1..15) ,Im<>0) then DeleteRow (Ans(n) )end if,n=2..17)"

 

Ans

Matrix(17, 15, {(1, 1) = `-`, (1, 2) = u0, (1, 3) = u1, (1, 4) = u2, (1, 5) = u3, (1, 6) = P*x, (1, 7) = Py, (1, 8) = Pz, (1, 9) = g0, (1, 10) = g1, (1, 11) = g2, (1, 12) = g3, (1, 13) = u^2, (1, 14) = g^2, (1, 15) = P, (2, 1) = 1, (2, 2) = -.516501806300516366332207827845271720295699875, (2, 3) = .157087667438024041386330713987768482051008262*I, (2, 4) = .113781789011852812312696505223578179747798329*I, (2, 5) = -.877979905726868500805204485093148911811362591, (2, 6) = -45.5583959992909648360043286735679679113587631, (2, 7) = -49.2104104577498887775211368820566392860712299, (2, 8) = -893.5067837*I, (2, 9) = -.866146675707479268632063873487527071333386044, (2, 10) = 0.392015486681650570173437868256055772345022977e-1*I, (2, 11) = -.1411657646*I, (2, 12) = .520820958366521078324036803446408915170112964, (2, 13) = .999999999999999999999999999999999999997268842, (2, 14) = .999999999999999999999999999999999999974976375, (2, 15) = 890.986610791943203054869284606448158021303178*I, (3, 1) = 0, (3, 2) = -.516501806300516366332207827845271720295699875, (3, 3) = -.1570876674*I, (3, 4) = -.1137817890*I, (3, 5) = -.877979905726868500805204485093148911811362591, (3, 6) = 0, (3, 7) = 0, (3, 8) = 0, (3, 9) = 0, (3, 10) = 0, (3, 11) = 0, (3, 12) = 0, (3, 13) = 0, (3, 14) = 0, (3, 15) = 0, (4, 1) = 2, (4, 2) = 1.37465842397864539997343521056744950913464373, (4, 3) = -.4720070715*I, (4, 4) = 1.04887251334709968989772260444378754238846281*I, (4, 5) = -.658208509656740520048240372814155977066034431, (4, 6) = -139.935858043713569770172241394940432701557933, (4, 7) = 1009.16689416507143999697715965318783801532828, (4, 8) = 35.050637050173061427545252165933711014164793*I, (4, 9) = -1.081758215*I, (4, 10) = -.805172606177376737844957657938233921696306905, (4, 11) = 1.28822588438750284892199202326992770781607054, (4, 12) = .370982506039653923963789326359229665746676298*I, (4, 13) = 1.00000000000000000000000000000000000000004448, (4, 14) = 1.00000000000000000000000000000000000002308483, (4, 15) = 1018.21968036744599747318369866423941656487034, (5, 1) = 0, (5, 2) = 1.37465842397864539997343521056744950913464373, (5, 3) = .472007071498869469711464480852290076392886818*I, (5, 4) = -1.048872513*I, (5, 5) = -.658208509656740520048240372814155977066034431, (5, 6) = 0, (5, 7) = 0, (5, 8) = 0, (5, 9) = 0, (5, 10) = 0, (5, 11) = 0, (5, 12) = 0, (5, 13) = 0, (5, 14) = 0, (5, 15) = 0, (6, 1) = 3, (6, 2) = .888607277416217966051928947403779522572804242, (6, 3) = -.106822611437208274601612056689973427508887756, (6, 4) = .227628951666705815052303897780904267397418654, (6, 5) = -.383602784885339918445575993340862111408067307, (6, 6) = -33.2619224164850716022540679651061384838837392, (6, 7) = -70.5221377558306752001316338827006032187340768, (6, 8) = 520.235208378859672763343647578296600919428272, (6, 9) = .403127155352863813666160452061241985268802920, (6, 10) = -.229875128453580499649930605383626391667210087, (6, 11) = -.249025243344440313757976839460134436215711022, (6, 12) = .850077849442508503270095108095866473994329709, (6, 13) = .999999999999999999999999999999999999999999990, (6, 14) = 1.00000000000000000000000000000000000000001494, (6, 15) = 526.046005054204528169704406776278260629227147, (7, 1) = 0, (7, 2) = .888607277416217966051928947403779522572804242, (7, 3) = .106822611437208274601612056689973427508887756, (7, 4) = -.227628951666705815052303897780904267397418654, (7, 5) = -.383602784885339918445575993340862111408067307, (7, 6) = 0, (7, 7) = 0, (7, 8) = 0, (7, 9) = 0, (7, 10) = 0, (7, 11) = 0, (7, 12) = 0, (7, 13) = 0, (7, 14) = 0, (7, 15) = 0, (8, 1) = 4, (8, 2) = .771395089635626888037058585282289072153672569, (8, 3) = -.251315638632409886572894533969222074089643996, (8, 4) = .494467079738422222368894560870844350373447897, (8, 5) = -.311917252680552965184041884461266972741091408, (8, 6) = -35.3773974809076144493333628813387306219066392, (8, 7) = -261.955262605587133808935304231369552994540307, (8, 8) = 267.817639506339708440220037786669249266668237, (8, 9) = .542590138401669145144489319765760630956089296, (8, 10) = -.207306657051038538831939399741694104211987188, (8, 11) = -.745192226522038608473536679495983480516139685, (8, 12) = .327579665398674149197429570862493923635921752, (8, 13) = 1.00000000000000000000000000000000000000000004, (8, 14) = 1.00000000000000000000000000000000000000000070, (8, 15) = 376.295638946336949362327994692547262453058894, (9, 1) = 0, (9, 2) = .771395089635626888037058585282289072153672569, (9, 3) = .251315638632409886572894533969222074089643996, (9, 4) = -.494467079738422222368894560870844350373447897, (9, 5) = -.311917252680552965184041884461266972741091408, (9, 6) = 0, (9, 7) = 0, (9, 8) = 0, (9, 9) = 0, (9, 10) = 0, (9, 11) = 0, (9, 12) = 0, (9, 13) = 0, (9, 14) = 0, (9, 15) = 0, (10, 1) = 5, (10, 2) = -.771395089635626888037058585282289072153672569, (10, 3) = -.251315638632409886572894533969222074089643996, (10, 4) = .494467079738422222368894560870844350373447897, (10, 5) = .311917252680552965184041884461266972741091408, (10, 6) = -35.3773974809076144493333628813387306219066392, (10, 7) = -261.955262605587133808935304231369552994540307, (10, 8) = -267.817639506339708440220037786669249266668237, (10, 9) = .542590138401669145144489319765760630956089296, (10, 10) = .207306657051038538831939399741694104211987188, (10, 11) = .745192226522038608473536679495983480516139685, (10, 12) = .327579665398674149197429570862493923635921752, (10, 13) = 1.00000000000000000000000000000000000000000004, (10, 14) = 1.00000000000000000000000000000000000000000070, (10, 15) = 376.295638946336949362327994692547262453058894, (11, 1) = 0, (11, 2) = -.771395089635626888037058585282289072153672569, (11, 3) = .251315638632409886572894533969222074089643996, (11, 4) = -.494467079738422222368894560870844350373447897, (11, 5) = .311917252680552965184041884461266972741091408, (11, 6) = 0, (11, 7) = 0, (11, 8) = 0, (11, 9) = 0, (11, 10) = 0, (11, 11) = 0, (11, 12) = 0, (11, 13) = 0, (11, 14) = 0, (11, 15) = 0, (12, 1) = 6, (12, 2) = -.888607277416217966051928947403779522572804242, (12, 3) = -.106822611437208274601612056689973427508887756, (12, 4) = .227628951666705815052303897780904267397418654, (12, 5) = .383602784885339918445575993340862111408067307, (12, 6) = -33.2619224164850716022540679651061384838837392, (12, 7) = -70.5221377558306752001316338827006032187340768, (12, 8) = -520.235208378859672763343647578296600919428272, (12, 9) = .403127155352863813666160452061241985268802920, (12, 10) = .229875128453580499649930605383626391667210087, (12, 11) = .249025243344440313757976839460134436215711022, (12, 12) = .850077849442508503270095108095866473994329709, (12, 13) = .999999999999999999999999999999999999999999990, (12, 14) = 1.00000000000000000000000000000000000000001494, (12, 15) = 526.046005054204528169704406776278260629227147, (13, 1) = 0, (13, 2) = -.888607277416217966051928947403779522572804242, (13, 3) = .106822611437208274601612056689973427508887756, (13, 4) = -.227628951666705815052303897780904267397418654, (13, 5) = .383602784885339918445575993340862111408067307, (13, 6) = 0, (13, 7) = 0, (13, 8) = 0, (13, 9) = 0, (13, 10) = 0, (13, 11) = 0, (13, 12) = 0, (13, 13) = 0, (13, 14) = 0, (13, 15) = 0, (14, 1) = 7, (14, 2) = -1.37465842397864539997343521056744950913464373, (14, 3) = -.4720070715*I, (14, 4) = 1.04887251334709968989772260444378754238846281*I, (14, 5) = .658208509656740520048240372814155977066034431, (14, 6) = -139.935858043713569770172241394940432701557933, (14, 7) = 1009.16689416507143999697715965318783801532828, (14, 8) = -35.05063705*I, (14, 9) = -1.081758215*I, (14, 10) = .805172606177376737844957657938233921696306905, (14, 11) = -1.28822588438750284892199202326992770781607054, (14, 12) = .370982506039653923963789326359229665746676298*I, (14, 13) = 1.00000000000000000000000000000000000000004448, (14, 14) = 1.00000000000000000000000000000000000002308483, (14, 15) = 1018.21968036744599747318369866423941656487034, (15, 1) = 0, (15, 2) = -1.37465842397864539997343521056744950913464373, (15, 3) = .472007071498869469711464480852290076392886818*I, (15, 4) = -1.048872513*I, (15, 5) = .658208509656740520048240372814155977066034431, (15, 6) = 0, (15, 7) = 0, (15, 8) = 0, (15, 9) = 0, (15, 10) = 0, (15, 11) = 0, (15, 12) = 0, (15, 13) = 0, (15, 14) = 0, (15, 15) = 0, (16, 1) = 8, (16, 2) = .516501806300516366332207827845271720295699875, (16, 3) = .157087667438024041386330713987768482051008262*I, (16, 4) = .113781789011852812312696505223578179747798329*I, (16, 5) = .877979905726868500805204485093148911811362591, (16, 6) = -45.5583959992909648360043286735679679113587631, (16, 7) = -49.2104104577498887775211368820566392860712299, (16, 8) = 893.506783720169698656724304667952267191687315*I, (16, 9) = -.866146675707479268632063873487527071333386044, (16, 10) = -0.3920154867e-1*I, (16, 11) = .141165764599481508540163197537118257205129796*I, (16, 12) = .520820958366521078324036803446408915170112964, (16, 13) = .999999999999999999999999999999999999997268842, (16, 14) = .999999999999999999999999999999999999974976375, (16, 15) = 890.986610791943203054869284606448158021303178*I, (17, 1) = 0, (17, 2) = .516501806300516366332207827845271720295699875, (17, 3) = -.1570876674*I, (17, 4) = -.1137817890*I, (17, 5) = .877979905726868500805204485093148911811362591, (17, 6) = 0, (17, 7) = 0, (17, 8) = 0, (17, 9) = 0, (17, 10) = 0, (17, 11) = 0, (17, 12) = 0, (17, 13) = 0, (17, 14) = 0, (17, 15) = 0})

(6)

``

``

 

Download matrix_imaginery_elements.mw

I have the following command.

with(StringTools);
message := `Kajian ini mempunyai tiga objektif pertama seperti yang ditunjukkan dalam bahagian 1.11. Objektif tersebut harus`;

m := convert(message, bytes);

block := map(convert, m, binary);
block := map2(nprintf, "%08d", block);
block := map(proc (t) options operator, arrow; [seq(parse(convert(t, string)[i]), i = 1 .. length(convert(t, string)))] end proc, block);

block := [[0, 1, 0, 0, 1, 0, 1, 1], [0, 1, 1, 0, 0, 0, 0, 1], [0, 1, 1, 0, 1, 0, 1, 0], [0, 1, 1, 0, 1, 0, 0, 1], ........]

with(Bits);
for i to l do
for j from 3 to 7 do
block[i][j] := 1-block[i][j];  //used to flip bit in between 3rd to 7th bit in a block
end do;
c_block[i] := block[i];
end do;
c_block1 := [seq(c_block[i], i = 1 .. l)];

Error, assigning to a long list, please use Arrays

May i know how to solve this problem? I need to change some bit in a list but receive error when there is more than 100 elements in a list. Thank you.

I have a Document that I have been putting together.  When I insert a Subsection into a section below the title I get a 1D-math input command symbol.  Is there a way to prevent this from happening?  I have not had this problem before. 

It appears there is something confused in the startup of the document because when I start a new document and this doesn't happen.

It's almost like when I insert the subsection it converts that part to a worksheet?????

i'm using maple in a research but i want to add a recursive function h_m(t) in 2 case : if m is integer positive and not, 
la formule est donnée comme suit :  if (mod(m,1) = 0  and m>0) then  h:=proc(m,t)  local  t ;  h[0,t]:=t ;   for  i from -4 to  m  by  2 do  h [m,t]:= h[0, t]-(GAMMA(i/(2)))/(2*GAMMA((i+1)/(2)))*cos(Pi*t)*sin(Pi*t)  od:  fi:  end; 
  if (mod(m,1) = 0  and m>0) then  h:=proc(m,t)  local  t ;  h[0,t]:=t ;   for  i from -4 to  m  by  2 do  h [m,t]:= h[0, t]-(GAMMA(i/(2)))/(2*GAMMA((i+1)/(2)))*cos(Pi*t)*sin(Pi*t)  od:  fi:  end;
and i wanna to know how to programmate a Gaus Hypegeometric function. Thank You

 

Dear all,

I am trying to solve the following system of equations by using dsolve, but I get the error:  error, (in RootOf) expression independent of, _Z, could you please help me to solve it. Thank you.

restart;
Digits := 20;
with(plots);
Nr := .1; Nb := .3; Nt := .1; Rb := 0; Lb := 1; Le := 10; Pe := 1; ss := .2; aa := .1; bb := .2; cc := .3; nn := 1.5;
Eq1 := nn.(diff(f(eta), eta))^(nn-1).(diff(f(eta), `$`(eta, 2)))-(nn+1)/(2.*nn+1).eta.(diff(theta(eta), eta)-Nr.(diff(h(eta), eta))-Rb.(diff(g(eta), eta))) = 0;
Eq2 := diff(theta(eta), `$`(eta, 2))+nn/(2.*nn+1).f(eta).(diff(theta(eta), eta))+Nb.(diff(theta(eta), eta)).(diff(h(eta), eta))+Nt.((diff(theta(eta), eta))^2) = 0;
Eq3 := diff(h(eta), `$`(eta, 2))+nn/(2.*nn+1).Le.f(eta).(diff(h(eta), eta))+Nt/Nb.(diff(theta(eta), `$`(eta, 2))) = 0;
Eq4 := diff(g(eta), `$`(eta, 2))+nn/(2.*nn+1).Lb.f(eta).(diff(g(eta), eta))-Pe.((diff(g(eta), eta)).(diff(h(eta), eta))+(diff(h(eta), `$`(eta, 2))).g(eta)) = 0;
etainf := 10;
bcs := f(0) = ss/Le.(D(h))(0), theta(0) = lambda+aa.(D(theta))(0), h(0) = lambda+bb.(D(h))(0), g(0) = lambda+cc.(D(g))(0), (D(f))(etainf) = 0, theta(etainf) = 0, h(etainf) = 0, g(etainf) = 0;
dsys := {Eq1, Eq2, Eq3, Eq4, bcs};
dsol := dsolve(dsys, numeric, continuation = lambda, output = procedurelist);
Error, (in RootOf) expression independent of, _Z

hi

how i can solve nonlinear differential equations with shooting method in maple?ω in equation is unknown...

thanks

eq.mw

dsys3 := {-0.326905829596411e-2*g(x)-(diff(g(x), x, x))-(diff(s(x), x))*(diff(s(x), x, x))-(4/3)*omega^2*g(x), -s(x)*omega^2-(-0.573628192993074e-1*sin(0.571756792348295e-1*x)-0.163452914798206e-2*cos(0.571756792348295e-1*x))*(diff(s(x), x))-(1.00327307112014*cos(0.571756792348295e-1*x)-0.285878396174148e-1*sin(0.571756792348295e-1*x)-1)*(diff(s(x), x, x))+0.220893539279189e-4*(diff(s(x), x, x, x, x))-(9/8)*(diff(s(x), x, x))*(diff(s(x), x))^2-(3/4)*(diff(s(x), x, x))*(diff(g(x), x))-(3/4)*(diff(s(x), x))*(diff(g(x), x, x)), (D(g))(1)+(1/2)*(D(s))(1)^2 = 0, g(0) = 0, s(0) = 0, (D(s))(0) = 0, ((D@@2)(s))(1) = 0, ((D@@3)(s))(1) = 0}

{-0.326905829596411e-2*g(x)-(diff(diff(g(x), x), x))-(diff(s(x), x))*(diff(diff(s(x), x), x))-(4/3)*omega^2*g(x), -s(x)*omega^2-(-0.573628192993074e-1*sin(0.571756792348295e-1*x)-0.163452914798206e-2*cos(0.571756792348295e-1*x))*(diff(s(x), x))-(1.00327307112014*cos(0.571756792348295e-1*x)-0.285878396174148e-1*sin(0.571756792348295e-1*x)-1)*(diff(diff(s(x), x), x))+0.220893539279189e-4*(diff(diff(diff(diff(s(x), x), x), x), x))-(9/8)*(diff(diff(s(x), x), x))*(diff(s(x), x))^2-(3/4)*(diff(diff(s(x), x), x))*(diff(g(x), x))-(3/4)*(diff(s(x), x))*(diff(diff(g(x), x), x)), (D(g))(1)+(1/2)*(D(s))(1)^2 = 0, g(0) = 0, s(0) = 0, (D(s))(0) = 0, ((D@@2)(s))(1) = 0, ((D@@3)(s))(1) = 0}

(1)

``

 

Download eq.mw

Hi

We know determinant of a square matrix A[ij] (i,j ∈ {1,2,3}) is equal to the following expression

det(A) = 1/6 * e[ijk] * e[pqr] * A[ip] * A[jq] * A[kr] 

in which e[ijk] is a third order Tensor (Permutation notation or Levi-Civita symbol) and has a simple form as follows:

e[mnr] = 1/2 * (m-n) * (n-r) * (r-m).

The (i,j) minor of A, denoted Mij, is the determinant of the (n − 1)×(n − 1) matrix that results from deleting row i and column j of A. The cofactor matrix of A is the n×n matrix C whose (i, j) entry is the (i, j) cofactor of A,

C[ij]= -1 i+j * M[ij]

A-1=CT/det(A)

The general form of Levi-Civita symbol is as bellow:

 

I want to write a program for finding inverse of (NxN) matrix:

N=2 →

restart;
N := 2:
with(LinearAlgebra):
f := (1/2)*(sum(sum(sum(sum((m-n)*(p-q)*A[m, p]*A[n, q], q = 1 .. 2), p = 1 .. 2), n = 1 .. 2), m = 1 .. 2)):
A := Matrix(N, N, proc (i, j) options operator, arrow; evalf((37*i^2+j^3)/(2*i+4*j)) end proc):
f/Determinant(A);

N=3 →

restart;
N := 3:
with(LinearAlgebra):
f := (1/24)*(sum(sum(sum(sum(sum(sum((m-n)*(n-r)*(r-m)*(p-q)*(q-z)*(z-p)*A[m, p]*A[n, q]*A[r, z], m = 1 .. N), n = 1 .. N), r = 1 .. N), p = 1 .. N), q = 1 .. N), z = 1 .. N)):
A := Matrix(N, N, proc (i, j) options operator, arrow; 10*i^2/(20*i+j) end proc):
f/Determinant(A);

The results of above programs are equal to 1 and validation of method is observed.

If we can write the general form of determinant then we can find the inverse of any square non-singular matrices.

Now I try to write the mentioned program.

restart;
with(linalg):
N := 7:
Digits := 40:
e := product(product(signum(a[j]-a[i]), j = i+1 .. N), i = 1 .. N):
ML := product(A[a[k], b[k]], k = 1 .. N):
s[0] := e*subs(`$`(a[q] = b[q], q = 1 .. N), e)*ML:
for i to N do
s[i] := sum(sum(s[i-1], a[i] = 1 .. N), b[i] = 1 .. N)
end do:
A := Matrix(N, N, proc (i, j) options operator, arrow; evalf((3*i+j)/(i+2*j)) end proc): # arbitrary matrix
CN:=simplify(s[N]/det(A));

Therefore det(A)= CN-1 * e[a1,a2,..an] * e [b1,b2,.., bn] * A[a1,b1] * A[a2,b2] * ... * A[an,bn].

The correction coefficient is CN(for N)/CN(for N-1) = N!/(N-1)! =N.

restart:
with(linalg): N := 4: Digits := 20:
e := product(product(signum(a[j]-a[i]), j = i+1 .. N), i = 1 .. N):
ML := product(A[a[k], b[k]], k = 1 .. N):
s[0] := e*subs(`$`(a[q] = b[q], q = 1 .. N), e)*ML:
for r to N do s[r] := sum(sum(s[r-1], a[r] = 1 .. N), b[r] = 1 .. N) end do:
A := Matrix(N, N, proc (i, j) options operator, arrow; evalf((3*i+2*j)/(i+2*j)) end proc):
DET:=S[N]:
for x to N do for y to N do
e := product(product(signum(a[j]-a[i]), j = i+1 .. N-1), i = 1 .. N-1):
ML := product(AA[a[k], b[k]], k = 1 .. N-1):
S[0, x, y] := e*subs(`$`(a[q] = b[q], q = 1 .. N-1), e)*ML:
for r to N-1 do S[r, x, y] := sum(sum(S[r-1, x, y], a[r] = 1 .. N-1), b[r] = 1 .. N-1) end do:
f[y, x] := (-1)^(x+y)*subs(seq(seq(AA[t, u] = delrows(delcols(A, y .. y), x .. x)[t, u], t = 1 .. N-1), u = 1 .. N-1), S[N-1, x, y])
end do: end do:
Matrix(N, N, f)/(DET)*(24/6);
A^(-1);

CN for N=4 and N=3 is 24 and 6 respectively i.e. CN(4)/CN(3)=24/6.

When I use bellow procedure the error "(in S) bad index into Matrix" is occurred.

Please help me to write this algorithm by using procedure.

Thank you 

restart; with(linalg): Digits := 40: n := 7:
S := proc (N) local e, ML, s, i:
e := product(product(signum(a[j]-a[i]), j = i+1 .. N), i = 1 .. N):
ML := product(A[a[k], b[k]], k = 1 .. N):
s[0] := e*subs(`$`(a[q] = b[q], q = 1 .. N), e)*ML:
for i to N do s[i] := sum(sum(s[i-1], a[i] = 1 .. N), b[i] = 1 .. N) end do
end proc:
A := Matrix(n, n, proc (i, j) options operator, arrow; evalf((3*i+j)/(i+2*j)) end proc): # arbitrary matrix
CN := simplify(S(n)/det(A))

with(Statistics):
X := RandomVariable(Normal(0, 1))

DensityPlot(X,filled=true)

I don't know why the plot doesn't produce a shaded plot.

 

Hi all,

I seem to be quite stuck on figuring out how to leave certain letters (e.g. planck's constant h) inside the equation without having to assign it as some particular number. 

What I am trying to do is find the value of a when the following equation is at a minimum:

E = (a*(h^2)/2m) + 0.3989422804/sqrt(a)

Here h and m are what I want to set as constants without actually setting them to h := 1 because I want a in terms of h and m. I have already found the derivative dE/da:

((h^2)/2m) - 0.1994711402/a^(3/2)

But I cannot use fsolve to find the value of a at the minimum because it keeps saying that h and m are variables and unsolved for.

Any help would be greatly appreciated.

How to solve following recurrence equation:

 

a(0)=2;

a(n+1)=a(n)+a(n)^2

 

I tried,but it doesn't work.

How to find the sequence an ?

Maple_worsheet.mw

Mariusz Iwaniuk

First 1127 1128 1129 1130 1131 1132 1133 Last Page 1129 of 2434