MaplePrimes Questions

restart; with(PDEtools);
U := diff_table(Psi(`ψ_2`, `ψ_1`));
pde := `ψ_2`*(diff(Psi(`ψ_2`, `ψ_1`), `ψ_1`))+`ψ_1`*U[`ψ_1`]+2*U[] = 0;
ψ_2 Psi(ψ_2 + 1, ψ_1)

   + ψ_1 Psi(ψ_2 + 1, ψ_1) + 2 Psi(ψ_2, ψ_1) = 

  0
pdsolve(pde);
Error, (in pdsolve/info) first argument is not a differential equation

How can i solve it?

My Maple worksheet is attached below - where I am solving two quantum mechanics problems, trying to find the eigenvalues for certain potentials.  Using a previous post in Mapleprime (https://www.mapleprimes.com/questions/221629-Can-Maple-Find-Solution-To-Eigenvalue),  I saw how to get the lowest eigenvalue.  My question is how using numeric solutions, I can get the higher eigenvalues and corresponding solutions.  Is there a way to specify that e (the eigenvalue) has to be in a certain range.  I tried to specify assumptions (e>0.6), but that didn't work.  I know that for the second problem (using the shooting method) that the 4 lowest eigenvalues are 0.184358, 0.70747, 1.2065, 1.5625.  Thank you very much for you consideration.

 

ODE_BVP_eigenvalues.mw

 

 

Why does solve not find the value of xp = sqrt(1-v^2) in this worksheet?

SpecialRelativity.mw

Reference: Special Relativity and Classical Field Theory. Authors: Leonard Susskind and Art Friedman

I think I've seen this somewhere in Mapleprimes but I can't locate it. How do you pull the type and number of operations from an equation? 

a:=3*x^3-5*x^2+3*y

                   " *,^,-,*,^,+,* "

 

f := (s) -> -HankelH1(1, s)-2*I/Pi*BesselK(1, s);

evalf(Int(f(s), s = 0 .. 1));
                 -0.2348023134 + 0.3562894462 I

evalf(Int(Re(f(1.*s)), s = 0 .. 1)+I*Int(Im(f(1.*s)), s = 0 .. 1));
                 -0.2348023134 + 0.3562894462 I

evalf(Int(f(1.*s), s = 0 .. 1));
               -0.2094198744 + Float(infinity) I

I don't know if the third one is really an issue, but given that the first two work fine, looks suspicious.

If i have made a component invisible for asthetic reasons, (eg a text box) how can i undo this to edit its contents?

How can i export a plot using open maple in java?

engine.evaluate("Export(\"D:\\MyGraph.jpeg\", plot(sin(x)));");

and 

engine.evaluate("exportplot(\"D:\\MyGraph.jpeg\", plot(sin(x)));");

doesn't work,

exception - com.maplesoft.externalcall.MapleException: Error, (in Export) exported file D:MyGraph.jpeg could not be createdError, plotting was not implemented by the application

 

Thanks.

1. This seems wrong:

applyrule(x::symbol+y::symbol = 0, a+b);
                             a + b

2. Should these two match f(a)?

applyrule((h::anything)(a) = 0, f(a));
                              f(a)
applyrule(x::f(x1::anything) = 0, f(a));
                              f(a)

3. hypergeom will give an error if the arguments are not lists, so how to write a pattern that will match hypergeom(anything, anything, a)? This works but is... skittish:

applyrule('''hypergeom'''(x1::anything, x2::anything, a) = 0, hypergeom([], [], a));
                               0

How do i find the distance between the quasi cyclic codes in maple ?

how do i solve a system of PDE's with variable coeffiecients in Maple?

I have some elliptic curve with some points on it:

I would like to give the points some names, P, etc., but cannot figure out how to do that probably simple task. The help pages ?plot,options and ?pointplot do not seem to cover it; I may be mistaken, of course. The above plot is the result of the following code:

curve := y^2 = x^3 - 43*x + 166;
display([
   plot(+sqrt(rhs(curve)),x = -10..12),
   plot(-sqrt(rhs(curve)),x = -10..12),
   pointplot([[3,8],[-5,16],[11,32],[3,-8]],symbol = solidbox)
]);

Update: Using, among other things, the textplot command as suggested below, here, just for the fun of it, a plot illustrating the group 'addition' of points on an elliptic curve, the three lines being tangents to the curve:

Hello everyone,

I have modeled a parallel manipulator using MapleSim 6.4 and it is giving me an error.

ParalelManipulator_v2.msim

The types of joint are shown by the visual below. Note that in my model I have used a universal joint or two coinciding revolute joints instead of a speherical joint.

I really need to factor minus one from -x-yI. I can do -[x+yI] and -{x+yI}. I cannot do -(x+yI).
Well, i really don't have these numbers exactly. They are produced within a Maple program.
I have something like ab, where a is the number x+yI. The little trick -`a`b will not work because
of the rather involved form of "a".
Thank you!

mapleatha

 

 

what package I need to add in order to use commands named "Drawmatrix, Translatemat and Transform" ? I add package named Lamp but it is not working. I have maple 15. Please try to respond as soon as possible because its urgent.

 

Thank you

Hello. Please help me to correct the error. Thank you

lambda := proc (r) options operator, arrow; 3*r end proc;

proc (r) options operator, arrow; 3*r end proc

(1)

mu := proc (r) options operator, arrow; 4*r end proc;

proc (r) options operator, arrow; 4*r end proc

(2)

r1 := 5;

5

(3)

r2 := 3;

3

(4)

omega := 7;

7

(5)

alpha := 1;

1

(6)

beta := 1;

1

(7)

rho := 1;

1

(8)

n := 1;

1

(9)

rho1 := 4;

4

(10)

A := 8;

8

(11)

f11 := proc (r) options operator, arrow; (lambda(r)+2*mu(r))*r^2 end proc;

proc (r) options operator, arrow; (lambda(r)+2*mu(r))*r^2 end proc

(12)

f12 := proc (r) options operator, arrow; [(diff(lambda(r), r)+2*(diff(mu(r), r)))*r^2+(lambda(r)+2*mu(r))*r] end proc

proc (r) options operator, arrow; [(diff(lambda(r), r)+2*(diff(mu(r), r)))*r^2+(lambda(r)+2*mu(r))*r] end proc

(13)

f13 := proc (r) options operator, arrow; -n*(lambda(r)+mu(r))*r end proc;

proc (r) options operator, arrow; -n*(lambda(r)+mu(r))*r end proc

(14)

NULL

f14 := proc (r) options operator, arrow; -alpha*(lambda(r)+mu(r))*r^2 end proc;

proc (r) options operator, arrow; -alpha*(lambda(r)+mu(r))*r^2 end proc

(15)

f15 := proc (r) options operator, arrow; [(diff(lambda(r), r))*r-lambda(r)-(n^2+2+alpha^2*r^2)*mu(r)+omega^2*rho*r^2] end proc;

proc (r) options operator, arrow; [(diff(lambda(r), r))*r-lambda(r)-(n^2+2+alpha^2*r^2)*mu(r)+omega^2*rho*r^2] end proc

(16)

f16 := proc (r) options operator, arrow; -n*[(diff(lambda(r), r))*r-lambda(r)-3*mu(r)] end proc;

proc (r) options operator, arrow; -n*[(diff(lambda(r), r))*r-lambda(r)-3*mu(r)] end proc

(17)

f17 := proc (r) options operator, arrow; -alpha*(diff(lambda(r), r))*r^2 end proc;

proc (r) options operator, arrow; -alpha*(diff(lambda(r), r))*r^2 end proc

(18)

f21 := proc (r) options operator, arrow; (lambda(r)+2*mu(r))*r^2 end proc;

proc (r) options operator, arrow; (lambda(r)+2*mu(r))*r^2 end proc

(19)

f22 := proc (r) options operator, arrow; [(diff(lambda(r), r)+2*(diff(mu(r), r)))*r^2+(lambda(r)+2*mu(r))*r] end proc

proc (r) options operator, arrow; [(diff(lambda(r), r)+2*(diff(mu(r), r)))*r^2+(lambda(r)+2*mu(r))*r] end proc

(20)

f23 := proc (r) options operator, arrow; n*(lambda(r)+mu(r))*r end proc;

proc (r) options operator, arrow; n*(lambda(r)+mu(r))*r end proc

(21)

f24 := proc (r) options operator, arrow; alpha*(lambda(r)+mu(r))*r^2 end proc;

proc (r) options operator, arrow; alpha*(lambda(r)+mu(r))*r^2 end proc

(22)

f25 := proc (r) options operator, arrow; [(diff(lambda(r), r))*r-lambda(r)-(n^2+2+alpha^2*r^2)*mu(r)+omega^2*rho*r^2] end proc;

proc (r) options operator, arrow; [(diff(lambda(r), r))*r-lambda(r)-(n^2+2+alpha^2*r^2)*mu(r)+omega^2*rho*r^2] end proc

(23)

f26 := proc (r) options operator, arrow; n*[(diff(lambda(r), r))*r-lambda(r)-3*mu(r)] end proc;

proc (r) options operator, arrow; n*[(diff(lambda(r), r))*r-lambda(r)-3*mu(r)] end proc

(24)

f27 := proc (r) options operator, arrow; alpha*(diff(lambda(r), r))*r^2 end proc;

proc (r) options operator, arrow; alpha*(diff(lambda(r), r))*r^2 end proc

(25)

f31 := proc (r) options operator, arrow; mu(r)*r^2 end proc;

proc (r) options operator, arrow; mu(r)*r^2 end proc

(26)

f32 := proc (r) options operator, arrow; -n*(lambda(r)+mu(r))*r end proc;

proc (r) options operator, arrow; -n*(lambda(r)+mu(r))*r end proc

(27)

f33 := proc (r) options operator, arrow; (diff(mu(r), r))*r^2+mu(r)*r end proc;

proc (r) options operator, arrow; (diff(mu(r), r))*r^2+mu(r)*r end proc

(28)

f34 := proc (r) options operator, arrow; -n*((diff(mu(r), r))*r+lambda(r)+3*mu(r)) end proc;

proc (r) options operator, arrow; -n*((diff(mu(r), r))*r+lambda(r)+3*mu(r)) end proc

(29)

f35 := proc (r) options operator, arrow; [-(diff(mu(r), r))*r-n^2*lambda(r)-(2*n^2+alpha^2*r^2+1)*mu(r)+omega^2*rho*r^2] end proc;

proc (r) options operator, arrow; [-(diff(mu(r), r))*r-n^2*lambda(r)-(2*n^2+alpha^2*r^2+1)*mu(r)+omega^2*rho*r^2] end proc

(30)

f36 := proc (r) options operator, arrow; -n*alpha*(lambda(r)+mu(r))*r end proc;

proc (r) options operator, arrow; -n*alpha*(lambda(r)+mu(r))*r end proc

(31)

f41 := proc (r) options operator, arrow; mu(r)*r^2 end proc;

proc (r) options operator, arrow; mu(r)*r^2 end proc

(32)

f42 := proc (r) options operator, arrow; n*(lambda(r)+mu(r))*r end proc;

proc (r) options operator, arrow; n*(lambda(r)+mu(r))*r end proc

(33)

f43 := proc (r) options operator, arrow; (diff(mu(r), r))*r^2+mu(r)*r end proc;

proc (r) options operator, arrow; (diff(mu(r), r))*r^2+mu(r)*r end proc

(34)

f44 := proc (r) options operator, arrow; n*((diff(mu(r), r))*r+lambda(r)+3*mu(r)) end proc;

proc (r) options operator, arrow; n*((diff(mu(r), r))*r+lambda(r)+3*mu(r)) end proc

(35)

f45 := proc (r) options operator, arrow; [-(diff(mu(r), r))*r-n^2*lambda(r)-(2*n^2+alpha^2*r^2+1)*mu(r)+omega^2*rho*r^2] end proc;

proc (r) options operator, arrow; [-(diff(mu(r), r))*r-n^2*lambda(r)-(2*n^2+alpha^2*r^2+1)*mu(r)+omega^2*rho*r^2] end proc

(36)

f46 := proc (r) options operator, arrow; -n*alpha*(lambda(r)+mu(r))*r end proc;

proc (r) options operator, arrow; -n*alpha*(lambda(r)+mu(r))*r end proc

(37)

f51 := proc (r) options operator, arrow; mu(r)*r^2 end proc;

proc (r) options operator, arrow; mu(r)*r^2 end proc

(38)

f52 := proc (r) options operator, arrow; -alpha*(lambda(r)+mu(r))*r^2 end proc;

proc (r) options operator, arrow; -alpha*(lambda(r)+mu(r))*r^2 end proc

(39)

f53 := proc (r) options operator, arrow; (diff(mu(r), r))*r^2+mu(r)*r end proc;

proc (r) options operator, arrow; (diff(mu(r), r))*r^2+mu(r)*r end proc

(40)

f54 := proc (r) options operator, arrow; -alpha*[(diff(mu(r), r))*r^2+(lambda(r)+mu(r))*r] end proc;

proc (r) options operator, arrow; -alpha*[(diff(mu(r), r))*r^2+(lambda(r)+mu(r))*r] end proc

(41)

f55 := proc (r) options operator, arrow; -n*alpha*(lambda(r)+mu(r))*r end proc;

proc (r) options operator, arrow; -n*alpha*(lambda(r)+mu(r))*r end proc

(42)

f56 := proc (r) options operator, arrow; [-(n^2+2*alpha^2*r^2)*mu(r)-alpha^2*lambda(r)*r^2+omega^2*rho*r^2] end proc;

proc (r) options operator, arrow; [-(n^2+2*alpha^2*r^2)*mu(r)-alpha^2*lambda(r)*r^2+omega^2*rho*r^2] end proc

(43)

f61 := proc (r) options operator, arrow; mu(r)*r^2 end proc;

proc (r) options operator, arrow; mu(r)*r^2 end proc

(44)

f62 := proc (r) options operator, arrow; alpha*(lambda(r)+mu(r))*r^2 end proc;

proc (r) options operator, arrow; alpha*(lambda(r)+mu(r))*r^2 end proc

(45)

f63 := proc (r) options operator, arrow; (diff(mu(r), r))*r^2+mu(r)*r end proc;

proc (r) options operator, arrow; (diff(mu(r), r))*r^2+mu(r)*r end proc

(46)

f64 := proc (r) options operator, arrow; alpha*[(diff(mu(r), r))*r^2+(lambda(r)+mu(r))*r] end proc;

proc (r) options operator, arrow; alpha*[(diff(mu(r), r))*r^2+(lambda(r)+mu(r))*r] end proc

(47)

f65 := proc (r) options operator, arrow; -n*alpha*(lambda(r)+mu(r))*r end proc;

proc (r) options operator, arrow; -n*alpha*(lambda(r)+mu(r))*r end proc

(48)

f66 := proc (r) options operator, arrow; [-(n^2+2*alpha^2*r^2)*mu(r)-alpha^2*lambda(r)*r^2+omega^2*rho*r^2] end proc;

proc (r) options operator, arrow; [-(n^2+2*alpha^2*r^2)*mu(r)-alpha^2*lambda(r)*r^2+omega^2*rho*r^2] end proc

(49)

``

DJ := proc (x, n) options operator, arrow; diff(BesselJ(n, x), x) end proc;

proc (x, n) options operator, arrow; diff(BesselJ(n, x), x) end proc

(50)

DY := proc (x, n) options operator, arrow; diff(BesselY(n, x), x) end proc;

proc (x, n) options operator, arrow; diff(BesselY(n, x), x) end proc

(51)

``

g11 := proc (r) options operator, arrow; (lambda(r)+2*mu(r))*subs(x = beta*r1, DJ(x, n)) end proc;

proc (r) options operator, arrow; (lambda(r)+2*mu(r))*subs(x = beta*r1, DJ(x, n)) end proc

(52)

g12 := proc (r) options operator, arrow; -(lambda(r)+2*mu(r))*subs(x = beta*r1, DY(x, n)) end proc;

proc (r) options operator, arrow; -(lambda(r)+2*mu(r))*subs(x = beta*r1, DY(x, n)) end proc

(53)

````

g13 := proc (r) options operator, arrow; lambda(r)*subs(x = beta*r1, DJ(x, n))/r+omega^2*rho1*subs(x = beta*r1, BesselJ(n, x))/beta end proc;

proc (r) options operator, arrow; lambda(r)*subs(x = beta*r1, DJ(x, n))/r+omega^2*rho1*subs(x = beta*r1, BesselJ(n, x))/beta end proc

(54)

g14 := proc (r) options operator, arrow; -lambda(r)*subs(x = beta*r1, DY(x, n))/r-omega^2*rho1*subs(x = beta*r1, BesselY(n, x))/beta end proc;

proc (r) options operator, arrow; -lambda(r)*subs(x = beta*r1, DY(x, n))/r-omega^2*rho1*subs(x = beta*r1, BesselY(n, x))/beta end proc

(55)

g15 := proc (r) options operator, arrow; -n*lambda(r)*subs(x = beta*r1, DY(x, n))/r end proc;

proc (r) options operator, arrow; -n*lambda(r)*subs(x = beta*r1, DY(x, n))/r end proc

(56)

BesselY(0, 5)-(1/5)*BesselY(1, 5)

(57)

g16 := proc (r) options operator, arrow; -n*lambda(r)*subs(x = beta*r1, DJ(x, n))/r end proc;

proc (r) options operator, arrow; -n*lambda(r)*subs(x = beta*r1, DJ(x, n))/r end proc

(58)

 

g17 := proc (r) options operator, arrow; -alpha*lambda(r)*subs(x = beta*r1, DY(x, n)) end proc;

proc (r) options operator, arrow; -alpha*lambda(r)*subs(x = beta*r1, DY(x, n)) end proc

(59)

g18 := proc (r) options operator, arrow; -alpha*lambda(r)*subs(x = beta*r1, DJ(x, n)) end proc

proc (r) options operator, arrow; -alpha*lambda(r)*subs(x = beta*r1, DJ(x, n)) end proc

(60)

q1 := proc (r) options operator, arrow; piecewise(`mod`(n, 2) = 0, 2*i^n*A*omega*rho1/(Pi*beta*r1), `mod`(n, 2) <> 0, 0) end proc

proc (r) options operator, arrow; piecewise(`mod`(n, 2) = 0, 2*i^n*A*omega*rho1/(Pi*beta*r1), `mod`(n, 2) <> 0, 0) end proc

(61)

g21 := proc (r) options operator, arrow; (lambda(r)+2*mu(r))*subs(x = beta*r1, DY(x, n)) end proc;

proc (r) options operator, arrow; (lambda(r)+2*mu(r))*subs(x = beta*r1, DY(x, n)) end proc

(62)

g22 := proc (r) options operator, arrow; (lambda(r)+2*mu(r))*subs(x = beta*r1, DJ(x, n)) end proc;

proc (r) options operator, arrow; (lambda(r)+2*mu(r))*subs(x = beta*r1, DJ(x, n)) end proc

(63)

g23 := proc (r) options operator, arrow; lambda(r)*subs(x = beta*r1, DY(x, n))/r+omega^2*rho1*subs(x = beta*r1, BesselY(n, x))/beta end proc;

proc (r) options operator, arrow; lambda(r)*subs(x = beta*r1, DY(x, n))/r+omega^2*rho1*subs(x = beta*r1, BesselY(n, x))/beta end proc

(64)

g24 := proc (r) options operator, arrow; -lambda(r)*subs(x = beta*r1, DJ(x, n))/r-omega^2*rho1*subs(x = beta*r1, BesselJ(n, x))/beta end proc;

proc (r) options operator, arrow; -lambda(r)*subs(x = beta*r1, DJ(x, n))/r-omega^2*rho1*subs(x = beta*r1, BesselJ(n, x))/beta end proc

(65)

g25 := proc (r) options operator, arrow; n*lambda(r)*subs(x = beta*r1, DJ(x, n))/r end proc;

proc (r) options operator, arrow; n*lambda(r)*subs(x = beta*r1, DJ(x, n))/r end proc

(66)

g26 := proc (r) options operator, arrow; -n*lambda(r)*subs(x = beta*r1, DY(x, n))/r end proc;

proc (r) options operator, arrow; -n*lambda(r)*subs(x = beta*r1, DY(x, n))/r end proc

(67)

g27 := proc (r) options operator, arrow; alpha*lambda(r)*subs(x = beta*r1, DJ(x, n)) end proc;

proc (r) options operator, arrow; alpha*lambda(r)*subs(x = beta*r1, DJ(x, n)) end proc

(68)

g28 := proc (r) options operator, arrow; -alpha*lambda(r)*subs(x = beta*r1, DY(x, n)) end proc

proc (r) options operator, arrow; -alpha*lambda(r)*subs(x = beta*r1, DY(x, n)) end proc

(69)

q2 := proc (r) options operator, arrow; piecewise(`mod`(n, 2) <> 0, 2*i^n*A*omega*rho1/(i*Pi*beta*r1), `mod`(n, 2) = 0, 0) end proc

proc (r) options operator, arrow; piecewise(`mod`(n, 2) <> 0, 2*i^n*A*omega*rho1/(i*Pi*beta*r1), `mod`(n, 2) = 0, 0) end proc

(70)

g31 := proc (r) options operator, arrow; mu(r) end proc;

proc (r) options operator, arrow; mu(r) end proc

(71)

g32 := proc (r) options operator, arrow; -n*mu(r)/r end proc;

proc (r) options operator, arrow; -n*mu(r)/r end proc

(72)

g33 := proc (r) options operator, arrow; -mu(r)/r end proc;

proc (r) options operator, arrow; -mu(r)/r end proc

(73)

g41 := proc (r) options operator, arrow; mu(r) end proc;

proc (r) options operator, arrow; mu(r) end proc

(74)

g42 := proc (r) options operator, arrow; n*mu(r)/r end proc;

proc (r) options operator, arrow; n*mu(r)/r end proc

(75)

g43 := proc (r) options operator, arrow; -mu(r)/r end proc;

proc (r) options operator, arrow; -mu(r)/r end proc

(76)

g51 := proc (r) options operator, arrow; mu(r) end proc;

proc (r) options operator, arrow; mu(r) end proc

(77)

g52 := proc (r) options operator, arrow; -alpha*mu(r) end proc;

proc (r) options operator, arrow; -alpha*mu(r) end proc

(78)

g61 := proc (r) options operator, arrow; mu(r) end proc;

proc (r) options operator, arrow; mu(r) end proc

(79)

g62 := proc (r) options operator, arrow; alpha*mu(r) end proc;

proc (r) options operator, arrow; alpha*mu(r) end proc

(80)

``

sys := (diff(x1(r), `$`(r, 2)))*f11(r)+(diff(x1(r), r))*f12(r)+(diff(y2(r), r))*f13(r)+(diff(y3(r), y3))*f14(r)+x1(r)*f15(r)+y2(r)*f16(r)+y3(r)*f17(r) = 0, (diff(y1(r), `$`(r, 2)))*f21(r)+(diff(y1(r), r))*f22(r)+(diff(x2(r), `$`(r, 1)))*f23(r)+(diff(x3(r), r))*f24(r)+y1(r)*f25(r)+x2(r)*f26(r)+x3(r)*f27(r) = 0, (diff(x2(r), `$`(r, 2)))*f31(r)+(diff(y1(r), r))*f32(r)+(diff(x2(r), `$`(r, 1)))*f33(r)+y1(r)*f34(r)+x2(r)*f35(r)+x3(r)*f36(r) = 0, (diff(y2(r), `$`(r, 2)))*f41(r)+(diff(x1(r), r))*f42(r)+(diff(y2(r), r))*f43(r)+x1(r)*f44(r)+y2(r)*f45(r)+y3(r)*f46(r) = 0, (diff(x3(r), `$`(r, 2)))*f51(r)+(diff(y1(r), r))*f52(r)+(diff(x3(r), r))*f53(r)+y1(r)*f54(r)+x2(r)*f55(r)+x3(r)*f56(r) = 0, (diff(y3(r), `$`(r, 2)))*f61(r)+(diff(x1(r), r))*f62(r)+(diff(y3(r), r))*f63(r)+x1(r)*f64(r)+y2(r)*f65(r)+y3(r)*f66(r) = 0;

11*(diff(diff(x1(r), r), r))*r^3+(diff(x1(r), r))*[22*r^2]-7*(diff(y2(r), r))*r^2+x1(r)*[-4*(3+r^2)*r+49*r^2]+y2(r)*[12*r]-3*y3(r)*r^2 = 0, 11*(diff(diff(y1(r), r), r))*r^3+(diff(y1(r), r))*[22*r^2]+7*(diff(x2(r), r))*r^2+7*(diff(x3(r), r))*r^3+y1(r)*[-4*(3+r^2)*r+49*r^2]+x2(r)*[-12*r]+3*x3(r)*r^2 = 0, 4*(diff(diff(x2(r), r), r))*r^3-7*(diff(y1(r), r))*r^2+8*(diff(x2(r), r))*r^2-19*y1(r)*r+x2(r)*[-7*r-4*(3+r^2)*r+49*r^2]-7*x3(r)*r^2 = 0, 4*(diff(diff(y2(r), r), r))*r^3+7*(diff(x1(r), r))*r^2+8*(diff(y2(r), r))*r^2+19*x1(r)*r+y2(r)*[-7*r-4*(3+r^2)*r+49*r^2]-7*y3(r)*r^2 = 0, 4*(diff(diff(x3(r), r), r))*r^3-7*(diff(y1(r), r))*r^3+8*(diff(x3(r), r))*r^2+y1(r)*[-11*r^2]-7*x2(r)*r^2+x3(r)*[-4*(1+2*r^2)*r-3*r^3+49*r^2] = 0, 4*(diff(diff(y3(r), r), r))*r^3+7*(diff(x1(r), r))*r^3+8*(diff(y3(r), r))*r^2+x1(r)*[11*r^2]-7*y2(r)*r^2+y3(r)*[-4*(1+2*r^2)*r-3*r^3+49*r^2] = 0

(81)

a11 := (D(x1))(r1);

(D(x1))(5)

(82)

a12 := (D(y1))(r1);

(D(y1))(5)

(83)

a21 := (D(x2))(r1);

(D(x2))(5)

(84)

a22 := (D(y2))(r1);

(D(y2))(5)

(85)

a31 := (D(x3))(r1);

(D(x3))(5)

(86)

a32 := (D(y3))(r1);

(D(y3))(5)

(87)

Inits := a11*evalf(g11(r1))+a12*evalf(g12(r1))+x1(r1)*evalf(g13(r1))+y1(r1)*evalf(g14(r1))+x2(r1)*evalf(g15(r1))+y2(r1)*evalf(g16(r1))+x3(r1)*evalf(g17(r1))+y3(r1)*evalf(g18(r1)) = evalf(q1(r1)), a11*evalf(g21(r1))+a12*evalf(g22(r1))+x1(r1)*evalf(g23(r1))+y1(r1)*evalf(g24(r1))+x2(r1)*evalf(g25(r1))+y2(r1)*evalf(g26(r1))+x3(r1)*evalf(g27(r1))+y3(r1)*evalf(g28(r1)) = evalf(q2(r1)), a21*g31(r1)+y1(r1)*g32(r1)+x2(r1)*g33(r1) = 0, a22*g41(r1)+x1(r1)*g42(r1)+y2(r1)*g43(r1) = 0, a31*g51(r1)+y1(r1)*g52(r1) = 0, a32*g61(r1)+x1(r1)*g62(r1) = 0, x1(r2) = 0, x2(r2) = 0, x3(r2) = 0, y1(r2) = 0, y2(r2) = 0, y3(r2) = 0;

-6.164451908*(D(x1))(5)+18.59496397*(D(y1))(5)-64.54175380*x1(5)-27.96690534*y1(5)+1.014270762*x2(5)+.3362428313*y2(5)+5.071353808*x3(5)+1.681214157*y3(5) = 0., -18.59496397*(D(x1))(5)-6.164451908*(D(y1))(5)+27.96690534*x1(5)+64.54175380*y1(5)-.3362428313*x2(5)+1.014270762*y2(5)-1.681214157*x3(5)+5.071353808*y3(5) = 28.52056579, 20*(D(x2))(5)-4*y1(5)-4*x2(5) = 0, 20*(D(y2))(5)+4*x1(5)-4*y2(5) = 0, 20*(D(x3))(5)-20*y1(5) = 0, 20*(D(y3))(5)+20*x1(5) = 0, x1(3) = 0, x2(3) = 0, x3(3) = 0, y1(3) = 0, y2(3) = 0, y3(3) = 0

(88)

dde := dsolve({Inits, sys}, numeric)

Error, (in fproc) unable to store '[0.183848448391796e-1]+0.389981557194716e-2' when datatype=float[8]

 

NULL


 

Download ODU.mw

 

First 916 917 918 919 920 921 922 Last Page 918 of 2434