MaplePrimes Questions

How to increase the size of toolbar icons in Maple 2015 32-bit Classic on Windows?

Hello everyone! I got some trouble in process a list. Hope you can help:

Assume i got a list like this:

 

{{k = k, l = RootOf(_Z^2+_Z*k+k^2-1), o = -k-RootOf(_Z^2+_Z*k+k^2-1)}, {k = k, l = RootOf(_Z^2+_Z*k+k^2+1), o = -k-RootOf(_Z^2+_Z*k+k^2+1)}, {k = 0, l = 1, o = -1}, {k = 0, l = -1, o = 1}, {k = 1, l = 0, o = -1}, {k = 1, l = -1, o = 0}, {k = -1, l = 0, o = 1}, {k = -1, l = 1, o = 0}, {k = RootOf(_Z^2+1), l = 0, o = -RootOf(_Z^2+1)}, {k = RootOf(_Z^2+1), l = -RootOf(_Z^2+1), o = 0}}

 

Now all i want is remove Complex and RootOf from this list, how can i do that?

Thank for your reading adn your help!

I have the following expression

f=u/(sqrt(u*(u-1)))

and I want to simplify it. Eventhough that I tell Maple that u is real and greater than 1 but it does not simplify the expression. What is wrong? Please see the attached file.

Radical.mw

How I can sketch the helix with parametric equations x=2cost  y=sint  z=t  and the line with parameric equation x=-2t  y=1  z=(pi/2)+t   on a three-dimensional coordinate system?

How I can graph parabolic cylinder y=x^2 and elipsoid x^2+4y^2+4z^2=16 on a three-dimensional coordinate system?

How do you put labels on individual columns in ColumnGraph?

a1:= f(x) :
> T1 :=simplify((taylor(a1,x=alpha,N+3))):
> E1:=subs([seq(((D@@i)(f))(alpha) = 0,i=1..m-1),f(alpha)=0,x=e[n]+alpha],T1):
> g1 :=(convert(simplify(series((E1,e[n]=0,N))),polynom));

 

Hi,

 

I am trying to evaluate an integral and expecting an expression as a result. But the following code does not provide expression.

 

I am geting

 

I need help.

 

Thanks.

 

 

 

Hello,

I need to plot these functions in two different plots. (Profit_A and Profit_B together, Profit_AA and Profit_BB together).

The file is attached. plot_new.mw

I need to use these constant:

P[A]: 0 to P[B]-0.01 (with 0.01 increments)

P[B]: 0 to 0.50 (with 0.01 increments)   P[A] is always less than P[B] These are probabilities

p=1,

w[u] = 0.8,

w = 0.5,

v=0.5,

D[A] = 1000,

D[B] = 1000,

H = 2500,

 

 



thanks. I played around, and had problems implementing your ideas for one of the systems I'm interested in.I don't see a difference between this and what you had advised me on, but it gets an error.

any idea why?
or how to fix it?

thing1 := diff(B[1](t), t) = piecewise(t <= 500, 0.3e-2-(63/10000)*B[1](t)-(3/500)*B[2](t), -(3/10000)*B[1](t)):
thing2 := diff(B[1](t), t) = piecewise(t <= 500, 0.1e-1-(1/50)*B[1](t)-(13/625)*B[2](t), -(1/1250)*B[2](t)):
sol := dsolve({thing1, thing2, B[1](0) = 0, B[2](0) = 0}, {B[1](t), B[2](t)}, numeric, output = listprocedure); plots:-odeplot(sol, [B[1](t), B[2](t)], t = 450 .. 550);

Error, (in dsolve/numeric/DAE/explicit) unable to obtain the standard form of the DAE system due to the presence of leading dependent variables/derivatives in the piecewise: piecewise(t <= 500, 1/100-(1/50)*B[1](t)-(13/625)*B[2](t), -(1/1250)*B[2](t))-piecewise(t <= 500, 3/1000-(63/10000)*B[1](t)-(3/500)*B[2](t), -(3/10000)*B[1](t))
Error, (in plots/odeplot) curve is not fully specified in terms of the ODE solution, found additional unknowns {B[1](t), B[2](t)}


Hello! Hope every is fine. I want to expand the following expression

exp(2*c*t+2*d*n-d)*alpha*c*a[0]*b[1]^2-exp(2*c*t+2*d*n-d)*alpha*c*a[1]*b[0]*b[1]-exp(2*c*t+2*d*n-d)*alpha*a[0]*a[1]*b[1]+exp(2*c*t+2*d*n-d)*alpha*a[1]^2*b[0]+exp(2*c*t+2*d*n)*alpha*a[0]*a[1]*b[1]-exp(2*c*t+2*d*n)*alpha*a[1]^2*b[0]+exp(c*t+d*n)*alpha*c*a[0]*b[0]*b[1]-exp(c*t+d*n)*alpha*c*a[1]*b[0]^2-exp(2*c*t+2*d*n-d)*a[0]*b[1]^2+exp(2*c*t+2*d*n-d)*a[1]*b[0]*b[1]-exp(c*t+d*n-d)*alpha*a[0]^2*b[1]+exp(c*t+d*n-d)*alpha*a[0]*a[1]*b[0]+exp(2*c*t+2*d*n)*a[0]*b[1]^2-exp(2*c*t+2*d*n)*a[1]*b[0]*b[1]+exp(c*t+d*n)*alpha*a[0]^2*b[1]-exp(c*t+d*n)*alpha*a[0]*a[1]*b[0]-exp(c*t+d*n-d)*a[0]*b[0]*b[1]+exp(c*t+d*n-d)*a[1]*b[0]^2+exp(c*t+d*n)*a[0]*b[0]*b[1]-exp(c*t+d*n)*a[1]*b[0]^2

 

like this 

exp(2*c*t+2*d*n)*exp(-d)*alpha*c*a[0]*b[1]^2-exp(2*c*t+2*d*n)*exp(-d)*alpha*c*a[1]*b[0]*b[1]-exp(2*c*t+2*d*n)*exp(-d)*alpha*a[0]*a[1]*b[1]+exp(2*c*t+2*d*n)*exp(-d)*alpha*a[1]^2*b[0]+exp(2*c*t+2*d*n)*alpha*a[0]*a[1]*b[1]-exp(2*c*t+2*d*n)*alpha*a[1]^2*b[0]+exp(c*t+d*n)*alpha*c*a[0]*b[0]*b[1]-exp(c*t+d*n)*alpha*c*a[1]*b[0]^2-exp(2*c*t+2*d*n)*exp(-d)*a[0]*b[1]^2+exp(2*c*t+2*d*n)*exp(-d)*a[1]*b[0]*b[1]-exp(c*t+d*n)*exp(-d)*alpha*a[0]^2*b[1]+exp(c*t+d*n)*exp(-d)*alpha*a[0]*a[1]*b[0]+exp(2*c*t+2*d*n)*a[0]*b[1]^2-exp(2*c*t+2*d*n)*a[1]*b[0]*b[1]+exp(c*t+d*n)*alpha*a[0]^2*b[1]-exp(c*t+d*n)*alpha*a[0]*a[1]*b[0]-exp(c*t+d*n)*exp(-d)*a[0]*b[0]*b[1]+exp(c*t+d*n)*exp(-d)*a[1]*b[0]^2+exp(c*t+d*n)*a[0]*b[0]*b[1]-exp(c*t+d*n)*a[1]*b[0]^2

i.e., expand exp(2*c*t+2*d*n-d) into exp(2*c*t+2*d*n)*exp(-d) 

waiting your kind response 

how to do differentiation of an ideal in maple?

availables variables : a,b,c

case 1 : all are independent variebles, a,b,c

case 2 : only one independent variable, a

case 3: only one dependent variable a

 

i find this, but i do not know respect to which variable when differentiate an ideal which has 3 variables and 3 equations

http://www.maplesoft.com/support/help/maple/view.aspx?path=DifferentialAlgebra%2fTools%2fDifferentiate

Dear Maple T.A. users

I have just begun using Maple T.A. I have access to a number of questions, some of which involves placing points in a coordinate system. It works for most students, but for a few, including myself, it doesn't work. I am not able to place those points in the coordinate system at hand when leftclicking. What can be the reason for this issue?

Erik

I try to repeat lines (25)-(28) at

 

http://www.maplesoft.com/support/help/maple/view.aspx?path=Physics%2fTrace#commentform

 

I use Maple 14. However, instead of (28) I get the following result:

 

It means that Maple 14 does not perceive p_\mu, k_\nu and m as scalar quantities. I would like to ask how to define these variables correctly.

 

Thank you in advance!

I am interested in dynamic systems that changes system equations at a given point in time. So i often want to plot graphs that shows what would happen in the first 500 seconds, then using the point reached after 500 seconds as the starting point show what happens over the next 500 seconds.

For example my equations might innitially

diff(x,t)=x+p*y

diff(y,t)=x/y

and then after 500 seconds switch to 

diff(x,t)=x-p*y

diff(y,t)=x/y

simply estimating where the system is and feeding that into the other equation isn't an option because these equations have lots of parameters which p is representing in the above, and generally i want too use these graphs to illustrate the behaveious of the systems with the given parameters.

So far i use display and DEplot to make these grpahs.

First 1177 1178 1179 1180 1181 1182 1183 Last Page 1179 of 2434