MaplePrimes Questions

Hi

I have an ODE with 3 parameters
diff(B[1](t), t) = piecewise(t < 1000, kaC*(R-B[1](t))-k[d1]*B[1](t), 1000 < t, -k[d1]*B[1](t))

I'd like to make a graph that shows how its solution vary as Kac and Kd vary. This could have an axis of the form:

            | /k[d]
  B(t)  |/_ __
                t

which could contain a surface composed of the solutions as k[d] varies. Then a series of surfaces could be put together on the same axis to show what happens as kaC varies.

Some typical values are:

kaC = 6*10^(-2),
k[d1] = 7*10^(-3),
R = 1

I'd like to graph everything  in two orders of magnitude of these values for KaC and k[d1].

Currently I think the key obstacle is making a surface of solutions to the ODE; as once I can do that I think making a sequence of them on the same axis should be quite simple with Display

 

 

 

Could you help me make this code work?

Maple Worksheet - Error

Failed to load the worksheet /maplenet/convert/Matrix.mw .
 

Download Matrix.mw

 

restart;
with(LinearAlgebra);
A := 8; B := 5;
q := .4; p := .2; r := 1-p-q;
dimP := A+B+1;
P := Matrix(dimP, dimP, [0$dimP*dimP]);
P[1, 1] := 1; P[1, 2] := 0;
P[dimP, dimP] := 1; P[dimP, dimP-1] := 0;
for i from 2 to dimP-1 do P[i, i-1] := q; P[i, i] := r; P[i, i+1] := p end do;
p0 := Matrix(dimP, 1, [0$dimP]);
p0[A+1, 1] := 1;
pV[0] := p0;
PT := Transpose(P);
for n to 200 do pV[n] := PT . pV[n-1] end do;
map(proc (x) options operator, arrow; evalf(x, 3) end proc, Transpose(pV[5]));

 

Could you help me fix this code?
Thanks in advance

with(Statistics)

Wpath := proc (steps, t) local walk, i, N, ww; N := nops(steps); walk[0] := 0; for i from 0 to N-1 do walk[i+1] := walk[i]+steps[i+1]*sqrt(t/N) end do; ww := seq(plot(walk[i], t*i/N .. t*(i+1)/N), i = 0 .. N-1); plots[display]([ww]) end proc

N := 400

numbers := [random[empirical[.5, .5]](N)]

st1 := map(proc (x) options operator, arrow; 2*x-3 end proc, numbers)

list_of_k := [40, 20, 10, 5, 2, 1]

for j to nops(list_of_k) do k := list_of_k[j]; st[k] := [seq((sum(st1[p], p = i*k-k+1 .. k*i))/sqrt(k), i = 1 .. N/k)] end do

Error, (in limit/mrv/limsimpl) too many levels of recursion

 

``


 

Download Wiener_process.mw

How to calculate potential function of Maxwell equations?

is there calculation examples of strong and weak force examples too?

which library can calculate intersection numbers of familes of potential function of Maxwell equations?

is there any examples?

I know if we want calculus derivative of function use of command diff in maple. now i want know if want calculus variation of functional what we should do? is there any special command?

I am trying to use a procedure say f1 as a formal parameter for another procedure say f2 . f2 need to evaluate gradient of f1.But how can I give the coordinate for finding gradient. please see attached 

 

func.mw

hello. im new to maple when i want to plot i have this problem.

 

Hi everybody:

I have the code in Maple that when run it I see this error, how can I solve this error? 

tnx...

 

Hi

Im going to solve mixing layer boundary layer equation in maple but Its this error: "Error, (in Shoot:-shoot) invalid boundary conditions, must be given at one point"

please help me. thank you.

> restart;
> alias(U = u(x, y), V = v(x, y)); PDE := {diff(U, x)+diff(V, y) = 0, U*(diff(U, x))+V*(diff(U, y))-nu*(diff(U, `$`(y, 2))) = 0};
print(`output redirected...`); # input placeholder
    // d   \   / d   \        / d   \     / d   \      / d  / d   \\    \ 
   { |--- U| + |--- V| = 0, U |--- U| + V |--- U| - nu |--- |--- U|| = 0 }
    \\ dx  /   \ dy  /        \ dx  /     \ dy  /      \ dy \ dy  //    / 
> simsubs := eta(x, y) = y*sqrt((1/2)*u[0]/(nu*x));
print(`output redirected...`); # input placeholder
                                                  (1/2)
                                 1    (1/2) /u[0]\     
                     eta(x, y) = - y 2      |----|     
                                 2          \nu x/     
> stream := psi(x, y) = sqrt(2*nu*x*u[0])*f(eta(x, y));
print(`output redirected...`); # input placeholder
                           (1/2)            (1/2)             
              psi(x, y) = 2      (nu x u[0])      f(eta(x, y))
> Usubs := U = diff(rhs(stream), y);
print(`output redirected...`); # input placeholder
              (1/2)            (1/2)                 / d           \
         U = 2      (nu x u[0])      D(f)(eta(x, y)) |--- eta(x, y)|
                                                     \ dy          /
> Vsubs := V = -(diff(rhs(stream), x));
print(`output redirected...`); # input placeholder
               (1/2)                     
              2      f(eta(x, y)) nu u[0]
        V = - ---------------------------
                               (1/2)     
                  2 (nu x u[0])          

              (1/2)            (1/2)                 / d           \
           - 2      (nu x u[0])      D(f)(eta(x, y)) |--- eta(x, y)|
                                                     \ dx          /
> ODE := simplify(subs(Usubs, Vsubs, simsubs, PDE));
print(`output redirected...`); # input placeholder
 /                             /      /           /                 (1/2)\  /    
 |                  1          |    2 |           |1    (1/2) /u[0]\     |  |1   
 |0 = 0, - ------------------- |u[0]  |@@(D, 2)(f)|- y 2      |----|     | f|- y 
<                        (1/2) \      \           \2          \nu x/     /  \2   
 |               2 /u[0]\                                                        
 |         2 nu x  |----|                                                        
 \                 \nu x/                                                        

               (1/2)\          (1/2)  
   (1/2) /u[0]\     |    /u[0]\       
  2      |----|     | nu |----|      x
         \nu x/     /    \nu x/       

                                 /                 (1/2)\\\    \ 
                (1/2)            |1    (1/2) /u[0]\     |||    | 
   + (nu x u[0])      @@(D, 3)(f)|- y 2      |----|     ||| = 0| 
                                 \2          \nu x/     ///     >
                                                               | 
                                                               | 
                                                               / 
> simsubs2 := solve(subs(eta(x, y) = eta, simsubs), {y});
print(`output redirected...`); # input placeholder
                              /         (1/2) \ 
                              |    eta 2      | 
                              |y = -----------| 
                             <           (1/2) >
                              |    /u[0]\     | 
                              |    |----|     | 
                              \    \nu x/     / 
> ODE := simplify(subs(simsubs2, ODE), symbolic);
print(`output redirected...`); # input placeholder
      /             2                                                 \ 
      |         u[0]  (@@(D, 2)(f)(eta) f(eta) + @@(D, 3)(f)(eta))    | 
     < 0 = 0, - -------------------------------------------------- = 0 >
      |                                2 x                            | 
      \                                                               / 

> shootlib := "C:\\Users/abbas/Desktop/maple9/"; libname := shootlib, libname; with(Shoot);
print(`output redirected...`); # input placeholder
                                   [shoot]
> FNS := {f(eta), g(eta), h(eta)};
> ODE := {diff(f(eta), eta) = g(eta), diff(g(eta), eta) = h(eta), diff(h(eta), eta) = -f(eta)*h(eta)};
print(`output redirected...`); # input placeholder
 /  d                      d                      d                          \ 
{ ----- f(eta) = g(eta), ----- g(eta) = h(eta), ----- h(eta) = -f(eta) h(eta) }
 \ deta                   deta                   deta                        / 
> IC := {f(0) = 0, g(0) = 0, h(0) = beta};
print(`output redirected...`); # input placeholder
                      {f(0) = 0, g(0) = 0, h(0) = beta}
> BC := {g(-10.) = 0, g(10.) = 1, limit(eta-f(eta), eta = 10) = 0};
print(`output redirected...`); # input placeholder
                  {10 - f(10) = 0, g(-10.) = 0, g(10.) = 1}
> infolevel[shoot] := 1;
print(`output redirected...`); # input placeholder
                                      1
> S := shoot(ODE, IC, BC, FNS, beta = 0, abserr = 0.5e-6, output = listprocedure, method = taylorseries);
%;
Error, (in Shoot:-shoot) invalid boundary conditions, must be given at one point
 

Hi 

how can i solve this integral in term of x

int(d*e^(-b*x)/(((a*e^(-2*b*x)+c*e^(-4*x)))))

Need help solving this problem with a maple proc using the Crank–Nicolson method for the differential part and any other quadrature  for the integral part and thank you so much in advance any ideas or thoughts would be helpful

hello everyone,

please I need our help to find the eigenvalues (m) of this equation (eq)

thank you 

eq.mw
 

``

restart

with(LinearAlgebra):

NULL

Digits := 5:

``

``

eq := exp(-m*xi)*(exp((1/4)*sqrt(-m)*r*(r-1))*(1+(7/20)*sqrt(m)*r+((49/800)*m-(1/4)*sqrt(m))*r^2)*r^I+exp((1/4)*sqrt(-m)*r*(r-1))*(1+(7/20)*sqrt(m)*r+((49/800)*m-(1/4)*sqrt(m))*r^2)*r^I*cos(theta)+r^I*sin(5*theta))

exp(-m*xi)*(exp((1/4)*(-m)^(1/2)*r*(r-1))*(1+(7/20)*m^(1/2)*r+((49/800)*m-(1/4)*m^(1/2))*r^2)*r^I+exp((1/4)*(-m)^(1/2)*r*(r-1))*(1+(7/20)*m^(1/2)*r+((49/800)*m-(1/4)*m^(1/2))*r^2)*r^I*cos(theta)+r^I*sin(5*theta))

(1)

``


 

Download eq.mw

 

I just used Maple for the first time to find the roots of an equation, the problem they give me imaginary solutions every time I put a (ln); even for ln (1) it proposes me -265.745524189222 + 0.785398163397448 * I as a solution. Could you help me to solve this problem?

Could you help me converting this old version code to modern version code(Maple 2017)?
 

restart

N := 2; A := -N; B := N

q := .3; p := .5; sa := .9; sb := .1; r := 1-p-q

dimP := 2*N+1

P := Matrix(dimP, dimP)

P[1, 1] := sa; P[1, 2] := 1-sa; P[dimP, dimP] := sb; P[dimP, dimP-1] := 1-sb

for i from 2 to dimP-1 do P[i, i-1] := q; P[i, i] := r; P[i, i+1] := p end do

P

Matrix(%id = 18446745940352174910)

(1)

# change this part code to the modernversion with(linalg)

J := diag(`$`(1, dimP))

d := matrix(dimP, 1, [`$`(1, dimP)])

b := matrix(dimP+1, 1, [`$`(0, dimP), 1])

A := transpose(augment(P-J, d))

linsolve(A, b)

linsolve(transpose(augment(Matrix(%id = 18446745940387027294), d)), b)

(2)

``


 

Download mdernVersion.mw

First 678 679 680 681 682 683 684 Last Page 680 of 2434