MaplePrimes Questions

i don't know where is issue?

p-not.mw

restart

_local(gamma)

Warning, A new binding for the name `gamma` has been created. The global instance of this name is still accessible using the :- prefix, :-`gamma`.  See ?protect for details.

 

t := 0

0

(1)

M := -(2*(-(alpha*t*conjugate(a[1]+I*b[1])-y*conjugate(a[1]+I*b[1])^2+beta*t-x*conjugate(a[1]+I*b[1]))/conjugate(a[1]+I*b[1])-(alpha*t*(a[1]+I*b[1])-y*(a[1]+I*b[1])^2+beta*t-x*(a[1]+I*b[1]))/(a[1]+I*b[1])+((6*(a[4]+I*b[4]))*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])/((a[1]+I*b[1]-a[4]-I*b[4])^2*beta)+(6*(a[4]+I*b[4]))*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/((conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2*beta)-(alpha*t*conjugate(a[1]+I*b[1])-y*conjugate(a[1]+I*b[1])^2+beta*t-x*conjugate(a[1]+I*b[1]))/conjugate(a[1]+I*b[1])-(alpha*t*(a[1]+I*b[1])-y*(a[1]+I*b[1])^2+beta*t-x*(a[1]+I*b[1]))/(a[1]+I*b[1]))*exp((a[2]+I*b[2])*(-((a[2]+I*b[2])^2*(a[4]+I*b[4])+alpha*(a[4]+I*b[4])+beta)*t/(a[4]+I*b[4])+(a[4]+I*b[4])*y+x)+a[3]+I*b[3])+(36*(a[4]+I*b[4])^2*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-a[4]-I*b[4])^2*beta^2*(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2)-(6*(a[4]+I*b[4]))*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*(alpha*t*conjugate(a[1]+I*b[1])-y*conjugate(a[1]+I*b[1])^2+beta*t-x*conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-a[4]-I*b[4])^2*beta*conjugate(a[1]+I*b[1]))-(6*(a[4]+I*b[4]))*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))*(alpha*t*(a[1]+I*b[1])-y*(a[1]+I*b[1])^2+beta*t-x*(a[1]+I*b[1]))/((conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2*beta*(a[1]+I*b[1]))+(alpha*t*(a[1]+I*b[1])-y*(a[1]+I*b[1])^2+beta*t-x*(a[1]+I*b[1]))*(alpha*t*conjugate(a[1]+I*b[1])-y*conjugate(a[1]+I*b[1])^2+beta*t-x*conjugate(a[1]+I*b[1]))/((a[1]+I*b[1])*conjugate(a[1]+I*b[1]))+(6*(a[1]+I*b[1]))*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2*beta))*(a[2]+I*b[2])*exp((a[2]+I*b[2])*(-((a[2]+I*b[2])^2*(a[4]+I*b[4])+alpha*(a[4]+I*b[4])+beta)*t/(a[4]+I*b[4])+(a[4]+I*b[4])*y+x)+a[3]+I*b[3])+(6*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])/((a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2*beta)+6*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/((conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2*beta)-(alpha*t*conjugate(a[1]+I*b[1])-y*conjugate(a[1]+I*b[1])^2+beta*t-x*conjugate(a[1]+I*b[1]))/conjugate(a[1]+I*b[1])-(alpha*t*(a[1]+I*b[1])-y*(a[1]+I*b[1])^2+beta*t-x*(a[1]+I*b[1]))/(a[1]+I*b[1]))*exp(conjugate(a[2]+I*b[2])*(-(conjugate(a[2]+I*b[2])^2*conjugate(a[4]+I*b[4])+alpha*conjugate(a[4]+I*b[4])+beta)*t/conjugate(a[4]+I*b[4])+conjugate(a[4]+I*b[4])*y+x)+conjugate(a[3]+I*b[3]))+(36*conjugate(a[4]+I*b[4])^2*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2*beta^2*(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2)-6*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*(alpha*t*conjugate(a[1]+I*b[1])-y*conjugate(a[1]+I*b[1])^2+beta*t-x*conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2*beta*conjugate(a[1]+I*b[1]))-6*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))*(alpha*t*(a[1]+I*b[1])-y*(a[1]+I*b[1])^2+beta*t-x*(a[1]+I*b[1]))/((conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2*beta*(a[1]+I*b[1]))+(alpha*t*(a[1]+I*b[1])-y*(a[1]+I*b[1])^2+beta*t-x*(a[1]+I*b[1]))*(alpha*t*conjugate(a[1]+I*b[1])-y*conjugate(a[1]+I*b[1])^2+beta*t-x*conjugate(a[1]+I*b[1]))/((a[1]+I*b[1])*conjugate(a[1]+I*b[1]))+(6*(a[1]+I*b[1]))*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2*beta))*conjugate(a[2]+I*b[2])*exp(conjugate(a[2]+I*b[2])*(-(conjugate(a[2]+I*b[2])^2*conjugate(a[4]+I*b[4])+alpha*conjugate(a[4]+I*b[4])+beta)*t/conjugate(a[4]+I*b[4])+conjugate(a[4]+I*b[4])*y+x)+conjugate(a[3]+I*b[3]))+(-(alpha*t*conjugate(a[1]+I*b[1])-y*conjugate(a[1]+I*b[1])^2+beta*t-x*conjugate(a[1]+I*b[1]))/conjugate(a[1]+I*b[1])-(alpha*t*(a[1]+I*b[1])-y*(a[1]+I*b[1])^2+beta*t-x*(a[1]+I*b[1]))/(a[1]+I*b[1])+(6*(a[4]+I*b[4]))*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/((conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2*beta)+6*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/((conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2*beta)+(6*(a[4]+I*b[4]))*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])/((a[1]+I*b[1]-a[4]-I*b[4])^2*beta)+6*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])/((a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2*beta))*((-(3*(a[2]+I*b[2]))*(a[2]+I*b[2]-conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*(a[4]+I*b[4])^2-(2*(-3*conjugate(a[2]+I*b[2])*(a[2]+I*b[2]-conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])*(1/2)+beta))*conjugate(a[4]+I*b[4])*(a[4]+I*b[4])+beta*conjugate(a[4]+I*b[4])^2)*exp((a[2]+I*b[2])*(-((a[2]+I*b[2])^2*(a[4]+I*b[4])+alpha*(a[4]+I*b[4])+beta)*t/(a[4]+I*b[4])+(a[4]+I*b[4])*y+x)+a[3]+I*b[3]+conjugate(a[2]+I*b[2])*(-(conjugate(a[2]+I*b[2])^2*conjugate(a[4]+I*b[4])+alpha*conjugate(a[4]+I*b[4])+beta)*t/conjugate(a[4]+I*b[4])+conjugate(a[4]+I*b[4])*y+x)+conjugate(a[3]+I*b[3]))/((-(3*(a[2]+I*b[2]))*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*(a[4]+I*b[4])^2-(2*(3*conjugate(a[2]+I*b[2])*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])*(1/2)+beta))*conjugate(a[4]+I*b[4])*(a[4]+I*b[4])+beta*conjugate(a[4]+I*b[4])^2)+((alpha*t*(a[1]+I*b[1])-y*(a[1]+I*b[1])^2+beta*t-x*(a[1]+I*b[1]))*(alpha*t*conjugate(a[1]+I*b[1])-y*conjugate(a[1]+I*b[1])^2+beta*t-x*conjugate(a[1]+I*b[1]))/((a[1]+I*b[1])*conjugate(a[1]+I*b[1]))-((6*(a[4]+I*b[4]))*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/((conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2*beta)+6*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/((conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2*beta))*(alpha*t*(a[1]+I*b[1])-y*(a[1]+I*b[1])^2+beta*t-x*(a[1]+I*b[1]))/(a[1]+I*b[1])-((6*(a[4]+I*b[4]))*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])/((a[1]+I*b[1]-a[4]-I*b[4])^2*beta)+6*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])/((a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2*beta))*(alpha*t*conjugate(a[1]+I*b[1])-y*conjugate(a[1]+I*b[1])^2+beta*t-x*conjugate(a[1]+I*b[1]))/conjugate(a[1]+I*b[1])+(6*(a[1]+I*b[1]))*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2*beta)+36*(a[4]+I*b[4])^2*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-a[4]-I*b[4])^2*beta^2*(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2)+36*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2*beta^2*(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2)+(36*(a[4]+I*b[4]))*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-a[4]-I*b[4])^2*beta^2*(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2)+36*conjugate(a[4]+I*b[4])^2*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2*beta^2*(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2))*((-(3*(a[2]+I*b[2]))*(a[2]+I*b[2]-conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*(a[4]+I*b[4])^2-(2*(-3*conjugate(a[2]+I*b[2])*(a[2]+I*b[2]-conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])*(1/2)+beta))*conjugate(a[4]+I*b[4])*(a[4]+I*b[4])+beta*conjugate(a[4]+I*b[4])^2)*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*exp((a[2]+I*b[2])*(-((a[2]+I*b[2])^2*(a[4]+I*b[4])+alpha*(a[4]+I*b[4])+beta)*t/(a[4]+I*b[4])+(a[4]+I*b[4])*y+x)+a[3]+I*b[3]+conjugate(a[2]+I*b[2])*(-(conjugate(a[2]+I*b[2])^2*conjugate(a[4]+I*b[4])+alpha*conjugate(a[4]+I*b[4])+beta)*t/conjugate(a[4]+I*b[4])+conjugate(a[4]+I*b[4])*y+x)+conjugate(a[3]+I*b[3]))/((-(3*(a[2]+I*b[2]))*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*(a[4]+I*b[4])^2-(2*(3*conjugate(a[2]+I*b[2])*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])*(1/2)+beta))*conjugate(a[4]+I*b[4])*(a[4]+I*b[4])+beta*conjugate(a[4]+I*b[4])^2)))/((alpha*t*(a[1]+I*b[1])-y*(a[1]+I*b[1])^2+beta*t-x*(a[1]+I*b[1]))*(alpha*t*conjugate(a[1]+I*b[1])-y*conjugate(a[1]+I*b[1])^2+beta*t-x*conjugate(a[1]+I*b[1]))/((a[1]+I*b[1])*conjugate(a[1]+I*b[1]))+(6*(a[1]+I*b[1]))*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2*beta)+(36*(a[4]+I*b[4])^2*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-a[4]-I*b[4])^2*beta^2*(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2)-(6*(a[4]+I*b[4]))*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*(alpha*t*conjugate(a[1]+I*b[1])-y*conjugate(a[1]+I*b[1])^2+beta*t-x*conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-a[4]-I*b[4])^2*beta*conjugate(a[1]+I*b[1]))-(6*(a[4]+I*b[4]))*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))*(alpha*t*(a[1]+I*b[1])-y*(a[1]+I*b[1])^2+beta*t-x*(a[1]+I*b[1]))/((conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2*beta*(a[1]+I*b[1]))+(alpha*t*(a[1]+I*b[1])-y*(a[1]+I*b[1])^2+beta*t-x*(a[1]+I*b[1]))*(alpha*t*conjugate(a[1]+I*b[1])-y*conjugate(a[1]+I*b[1])^2+beta*t-x*conjugate(a[1]+I*b[1]))/((a[1]+I*b[1])*conjugate(a[1]+I*b[1]))+(6*(a[1]+I*b[1]))*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2*beta))*exp((a[2]+I*b[2])*(-((a[2]+I*b[2])^2*(a[4]+I*b[4])+alpha*(a[4]+I*b[4])+beta)*t/(a[4]+I*b[4])+(a[4]+I*b[4])*y+x)+a[3]+I*b[3])+(36*conjugate(a[4]+I*b[4])^2*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2*beta^2*(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2)-6*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*(alpha*t*conjugate(a[1]+I*b[1])-y*conjugate(a[1]+I*b[1])^2+beta*t-x*conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2*beta*conjugate(a[1]+I*b[1]))-6*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))*(alpha*t*(a[1]+I*b[1])-y*(a[1]+I*b[1])^2+beta*t-x*(a[1]+I*b[1]))/((conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2*beta*(a[1]+I*b[1]))+(alpha*t*(a[1]+I*b[1])-y*(a[1]+I*b[1])^2+beta*t-x*(a[1]+I*b[1]))*(alpha*t*conjugate(a[1]+I*b[1])-y*conjugate(a[1]+I*b[1])^2+beta*t-x*conjugate(a[1]+I*b[1]))/((a[1]+I*b[1])*conjugate(a[1]+I*b[1]))+(6*(a[1]+I*b[1]))*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2*beta))*exp(conjugate(a[2]+I*b[2])*(-(conjugate(a[2]+I*b[2])^2*conjugate(a[4]+I*b[4])+alpha*conjugate(a[4]+I*b[4])+beta)*t/conjugate(a[4]+I*b[4])+conjugate(a[4]+I*b[4])*y+x)+conjugate(a[3]+I*b[3]))+((alpha*t*(a[1]+I*b[1])-y*(a[1]+I*b[1])^2+beta*t-x*(a[1]+I*b[1]))*(alpha*t*conjugate(a[1]+I*b[1])-y*conjugate(a[1]+I*b[1])^2+beta*t-x*conjugate(a[1]+I*b[1]))/((a[1]+I*b[1])*conjugate(a[1]+I*b[1]))-((6*(a[4]+I*b[4]))*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/((conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2*beta)+6*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/((conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2*beta))*(alpha*t*(a[1]+I*b[1])-y*(a[1]+I*b[1])^2+beta*t-x*(a[1]+I*b[1]))/(a[1]+I*b[1])-((6*(a[4]+I*b[4]))*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])/((a[1]+I*b[1]-a[4]-I*b[4])^2*beta)+6*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])/((a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2*beta))*(alpha*t*conjugate(a[1]+I*b[1])-y*conjugate(a[1]+I*b[1])^2+beta*t-x*conjugate(a[1]+I*b[1]))/conjugate(a[1]+I*b[1])+(6*(a[1]+I*b[1]))*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2*beta)+36*(a[4]+I*b[4])^2*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-a[4]-I*b[4])^2*beta^2*(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2)+36*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2*beta^2*(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2)+(36*(a[4]+I*b[4]))*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-a[4]-I*b[4])^2*beta^2*(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2)+36*conjugate(a[4]+I*b[4])^2*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2*beta^2*(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2))*((-(3*(a[2]+I*b[2]))*(a[2]+I*b[2]-conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*(a[4]+I*b[4])^2-(2*(-3*conjugate(a[2]+I*b[2])*(a[2]+I*b[2]-conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])*(1/2)+beta))*conjugate(a[4]+I*b[4])*(a[4]+I*b[4])+beta*conjugate(a[4]+I*b[4])^2)*exp((a[2]+I*b[2])*(-((a[2]+I*b[2])^2*(a[4]+I*b[4])+alpha*(a[4]+I*b[4])+beta)*t/(a[4]+I*b[4])+(a[4]+I*b[4])*y+x)+a[3]+I*b[3]+conjugate(a[2]+I*b[2])*(-(conjugate(a[2]+I*b[2])^2*conjugate(a[4]+I*b[4])+alpha*conjugate(a[4]+I*b[4])+beta)*t/conjugate(a[4]+I*b[4])+conjugate(a[4]+I*b[4])*y+x)+conjugate(a[3]+I*b[3]))/((-(3*(a[2]+I*b[2]))*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*(a[4]+I*b[4])^2-(2*(3*conjugate(a[2]+I*b[2])*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])*(1/2)+beta))*conjugate(a[4]+I*b[4])*(a[4]+I*b[4])+beta*conjugate(a[4]+I*b[4])^2))

NULL

lprint(indets(M,name));

{beta, x, y, a[1], a[2], a[3], a[4], b[1], b[2], b[3], b[4]}

 

G := proc(alpha,beta,a__1,a__2,a__3,a__4,b__1,b__2,b__3,b__4) global last; last := [[:-alpha=alpha, :-beta=beta, :-a[1]=a__1 , :-a[2]=a__2, :-a[3]=a__3,:-a[4]=a__4,:-b[1]=b__1,:-b[2]=b__2,:-b[3]=b__3,:-b[4]=b__4], eval(M, [:-alpha=alpha, :-beta=beta,:-a[1]=a__1,:-a[2]=a__2 ,:-a[3]=a__3,:-a[4]=a__4,:-b[1]=b__1,:-b[2]=b__2,:-b[3]=b__3,:-b[4]=b__4])]; plot3d(eval(M), y = -100 .. 100, x = -100 .. 100, view = -100 .. 100, grid = [150, 150], color = blue, style = surface, adaptmesh = false, size = [500, 500]); end proc;

proc (alpha, beta, a__1, a__2, a__3, a__4, b__1, b__2, b__3, b__4) global last; last := [[:-alpha = alpha, :-beta = beta, :-a[1] = a__1, :-a[2] = a__2, :-a[3] = a__3, :-a[4] = a__4, :-b[1] = b__1, :-b[2] = b__2, :-b[3] = b__3, :-b[4] = b__4], eval(M, [:-alpha = alpha, :-beta = beta, :-a[1] = a__1, :-a[2] = a__2, :-a[3] = a__3, :-a[4] = a__4, :-b[1] = b__1, :-b[2] = b__2, :-b[3] = b__3, :-b[4] = b__4])]; plot3d(eval(M), y = -100 .. 100, x = -100 .. 100, view = -100 .. 100, grid = [150, 150], color = blue, style = surface, adaptmesh = false, size = [500, 500]) end proc

(2)

last := 'last'; Explore(G(alpha, beta, a__1, a__2, a__3, a__4, b__1, b__2, b__3, b__4), alpha = -5.000000001 .. 5.000000001, beta = -5.000000001 .. 5.00000010, a__1 = -5.000000001 .. 5.00000010, a__2 = -5.000000001 .. 5.00000010, a__3 = -5.000000001 .. 5.00000010, a__4 = -5.000000001 .. 5.00000010, b__1 = -5.000000001 .. 5.00000010, b__2 = -5.000000001 .. 5.00000010, b__3 = -5.000000001 .. 5.00000010, b__4 = -5.000000001 .. 5.00000010, placement = right)

Warning, expecting only range variables [y, x] in expression -2*(-(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/conjugate(a[1]+I*b[1])-(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(a[1]+I*b[1])+(6*(a[4]+I*b[4])*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta+6*(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2/beta-(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/conjugate(a[1]+I*b[1])-(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(a[1]+I*b[1]))*exp((a[2]+I*b[2])*((a[4]+I*b[4])*y+x)+a[3]+I*b[3])+(36*(a[4]+I*b[4])^2*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta^2/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2-6*(a[4]+I*b[4])*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta/conjugate(a[1]+I*b[1])-6*(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))*(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2/beta/(a[1]+I*b[1])+(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1])/conjugate(a[1]+I*b[1])+6*(a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2/beta)*(a[2]+I*b[2])*exp((a[2]+I*b[2])*((a[4]+I*b[4])*y+x)+a[3]+I*b[3])+(6*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta+6*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2/beta-(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/conjugate(a[1]+I*b[1])-(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(a[1]+I*b[1]))*exp(conjugate(a[2]+I*b[2])*(conjugate(a[4]+I*b[4])*y+x)+conjugate(a[3]+I*b[3]))+(36*conjugate(a[4]+I*b[4])^2*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta^2/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2-6*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta/conjugate(a[1]+I*b[1])-6*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))*(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2/beta/(a[1]+I*b[1])+(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1])/conjugate(a[1]+I*b[1])+6*(a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2/beta)*conjugate(a[2]+I*b[2])*exp(conjugate(a[2]+I*b[2])*(conjugate(a[4]+I*b[4])*y+x)+conjugate(a[3]+I*b[3]))+(-(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/conjugate(a[1]+I*b[1])-(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(a[1]+I*b[1])+6*(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2/beta+6*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2/beta+6*(a[4]+I*b[4])*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta+6*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta)*((-3*(a[2]+I*b[2])*(a[2]+I*b[2]-conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*(a[4]+I*b[4])^2-2*(-3/2*conjugate(a[2]+I*b[2])*(a[2]+I*b[2]-conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*conjugate(a[4]+I*b[4])*(a[4]+I*b[4])+beta*conjugate(a[4]+I*b[4])^2)*exp((a[2]+I*b[2])*((a[4]+I*b[4])*y+x)+a[3]+I*b[3]+conjugate(a[2]+I*b[2])*(conjugate(a[4]+I*b[4])*y+x)+conjugate(a[3]+I*b[3]))/((-3*(a[2]+I*b[2])*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*(a[4]+I*b[4])^2-2*(3/2*conjugate(a[2]+I*b[2])*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*conjugate(a[4]+I*b[4])*(a[4]+I*b[4])+beta*conjugate(a[4]+I*b[4])^2)+((-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1])/conjugate(a[1]+I*b[1])-(6*(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2/beta+6*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2/beta)*(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(a[1]+I*b[1])-(6*(a[4]+I*b[4])*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta+6*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta)*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/conjugate(a[1]+I*b[1])+6*(a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2/beta+36*(a[4]+I*b[4])^2*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta^2/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2+36*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta^2/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2+36*(a[4]+I*b[4])*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta^2/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2+36*conjugate(a[4]+I*b[4])^2*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta^2/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2)*((-3*(a[2]+I*b[2])*(a[2]+I*b[2]-conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*(a[4]+I*b[4])^2-2*(-3/2*conjugate(a[2]+I*b[2])*(a[2]+I*b[2]-conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*conjugate(a[4]+I*b[4])*(a[4]+I*b[4])+beta*conjugate(a[4]+I*b[4])^2)*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*exp((a[2]+I*b[2])*((a[4]+I*b[4])*y+x)+a[3]+I*b[3]+conjugate(a[2]+I*b[2])*(conjugate(a[4]+I*b[4])*y+x)+conjugate(a[3]+I*b[3]))/((-3*(a[2]+I*b[2])*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*(a[4]+I*b[4])^2-2*(3/2*conjugate(a[2]+I*b[2])*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*conjugate(a[4]+I*b[4])*(a[4]+I*b[4])+beta*conjugate(a[4]+I*b[4])^2))/((-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1])/conjugate(a[1]+I*b[1])+6*(a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2/beta+(36*(a[4]+I*b[4])^2*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta^2/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2-6*(a[4]+I*b[4])*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta/conjugate(a[1]+I*b[1])-6*(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))*(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2/beta/(a[1]+I*b[1])+(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1])/conjugate(a[1]+I*b[1])+6*(a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2/beta)*exp((a[2]+I*b[2])*((a[4]+I*b[4])*y+x)+a[3]+I*b[3])+(36*conjugate(a[4]+I*b[4])^2*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta^2/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2-6*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta/conjugate(a[1]+I*b[1])-6*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))*(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2/beta/(a[1]+I*b[1])+(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1])/conjugate(a[1]+I*b[1])+6*(a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2/beta)*exp(conjugate(a[2]+I*b[2])*(conjugate(a[4]+I*b[4])*y+x)+conjugate(a[3]+I*b[3]))+((-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1])/conjugate(a[1]+I*b[1])-(6*(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2/beta+6*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2/beta)*(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(a[1]+I*b[1])-(6*(a[4]+I*b[4])*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta+6*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta)*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/conjugate(a[1]+I*b[1])+6*(a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2/beta+36*(a[4]+I*b[4])^2*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta^2/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2+36*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta^2/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2+36*(a[4]+I*b[4])*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta^2/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2+36*conjugate(a[4]+I*b[4])^2*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta^2/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2)*((-3*(a[2]+I*b[2])*(a[2]+I*b[2]-conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*(a[4]+I*b[4])^2-2*(-3/2*conjugate(a[2]+I*b[2])*(a[2]+I*b[2]-conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*conjugate(a[4]+I*b[4])*(a[4]+I*b[4])+beta*conjugate(a[4]+I*b[4])^2)*exp((a[2]+I*b[2])*((a[4]+I*b[4])*y+x)+a[3]+I*b[3]+conjugate(a[2]+I*b[2])*(conjugate(a[4]+I*b[4])*y+x)+conjugate(a[3]+I*b[3]))/((-3*(a[2]+I*b[2])*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*(a[4]+I*b[4])^2-2*(3/2*conjugate(a[2]+I*b[2])*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*conjugate(a[4]+I*b[4])*(a[4]+I*b[4])+beta*conjugate(a[4]+I*b[4])^2)) to be plotted but found names [beta, a[1], a[2], a[3], a[4], b[1], b[2], b[3], b[4]]

 

Warning, expecting only range variables [y, x] in expression -2*(-(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/conjugate(a[1]+I*b[1])-(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(a[1]+I*b[1])+(6*(a[4]+I*b[4])*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta+6*(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2/beta-(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/conjugate(a[1]+I*b[1])-(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(a[1]+I*b[1]))*exp((a[2]+I*b[2])*((a[4]+I*b[4])*y+x)+a[3]+I*b[3])+(36*(a[4]+I*b[4])^2*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta^2/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2-6*(a[4]+I*b[4])*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta/conjugate(a[1]+I*b[1])-6*(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))*(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2/beta/(a[1]+I*b[1])+(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1])/conjugate(a[1]+I*b[1])+6*(a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2/beta)*(a[2]+I*b[2])*exp((a[2]+I*b[2])*((a[4]+I*b[4])*y+x)+a[3]+I*b[3])+(6*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta+6*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2/beta-(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/conjugate(a[1]+I*b[1])-(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(a[1]+I*b[1]))*exp(conjugate(a[2]+I*b[2])*(conjugate(a[4]+I*b[4])*y+x)+conjugate(a[3]+I*b[3]))+(36*conjugate(a[4]+I*b[4])^2*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta^2/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2-6*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta/conjugate(a[1]+I*b[1])-6*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))*(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2/beta/(a[1]+I*b[1])+(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1])/conjugate(a[1]+I*b[1])+6*(a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2/beta)*conjugate(a[2]+I*b[2])*exp(conjugate(a[2]+I*b[2])*(conjugate(a[4]+I*b[4])*y+x)+conjugate(a[3]+I*b[3]))+(-(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/conjugate(a[1]+I*b[1])-(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(a[1]+I*b[1])+6*(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2/beta+6*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2/beta+6*(a[4]+I*b[4])*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta+6*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta)*((-3*(a[2]+I*b[2])*(a[2]+I*b[2]-conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*(a[4]+I*b[4])^2-2*(-3/2*conjugate(a[2]+I*b[2])*(a[2]+I*b[2]-conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*conjugate(a[4]+I*b[4])*(a[4]+I*b[4])+beta*conjugate(a[4]+I*b[4])^2)*exp((a[2]+I*b[2])*((a[4]+I*b[4])*y+x)+a[3]+I*b[3]+conjugate(a[2]+I*b[2])*(conjugate(a[4]+I*b[4])*y+x)+conjugate(a[3]+I*b[3]))/((-3*(a[2]+I*b[2])*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*(a[4]+I*b[4])^2-2*(3/2*conjugate(a[2]+I*b[2])*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*conjugate(a[4]+I*b[4])*(a[4]+I*b[4])+beta*conjugate(a[4]+I*b[4])^2)+((-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1])/conjugate(a[1]+I*b[1])-(6*(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2/beta+6*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2/beta)*(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(a[1]+I*b[1])-(6*(a[4]+I*b[4])*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta+6*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta)*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/conjugate(a[1]+I*b[1])+6*(a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2/beta+36*(a[4]+I*b[4])^2*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta^2/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2+36*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta^2/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2+36*(a[4]+I*b[4])*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta^2/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2+36*conjugate(a[4]+I*b[4])^2*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta^2/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2)*((-3*(a[2]+I*b[2])*(a[2]+I*b[2]-conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*(a[4]+I*b[4])^2-2*(-3/2*conjugate(a[2]+I*b[2])*(a[2]+I*b[2]-conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*conjugate(a[4]+I*b[4])*(a[4]+I*b[4])+beta*conjugate(a[4]+I*b[4])^2)*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*exp((a[2]+I*b[2])*((a[4]+I*b[4])*y+x)+a[3]+I*b[3]+conjugate(a[2]+I*b[2])*(conjugate(a[4]+I*b[4])*y+x)+conjugate(a[3]+I*b[3]))/((-3*(a[2]+I*b[2])*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*(a[4]+I*b[4])^2-2*(3/2*conjugate(a[2]+I*b[2])*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*conjugate(a[4]+I*b[4])*(a[4]+I*b[4])+beta*conjugate(a[4]+I*b[4])^2))/((-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1])/conjugate(a[1]+I*b[1])+6*(a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2/beta+(36*(a[4]+I*b[4])^2*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta^2/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2-6*(a[4]+I*b[4])*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta/conjugate(a[1]+I*b[1])-6*(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))*(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2/beta/(a[1]+I*b[1])+(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1])/conjugate(a[1]+I*b[1])+6*(a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2/beta)*exp((a[2]+I*b[2])*((a[4]+I*b[4])*y+x)+a[3]+I*b[3])+(36*conjugate(a[4]+I*b[4])^2*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta^2/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2-6*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta/conjugate(a[1]+I*b[1])-6*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))*(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2/beta/(a[1]+I*b[1])+(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1])/conjugate(a[1]+I*b[1])+6*(a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2/beta)*exp(conjugate(a[2]+I*b[2])*(conjugate(a[4]+I*b[4])*y+x)+conjugate(a[3]+I*b[3]))+((-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1])/conjugate(a[1]+I*b[1])-(6*(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2/beta+6*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2/beta)*(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(a[1]+I*b[1])-(6*(a[4]+I*b[4])*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta+6*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta)*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/conjugate(a[1]+I*b[1])+6*(a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2/beta+36*(a[4]+I*b[4])^2*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta^2/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2+36*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta^2/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2+36*(a[4]+I*b[4])*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta^2/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2+36*conjugate(a[4]+I*b[4])^2*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta^2/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2)*((-3*(a[2]+I*b[2])*(a[2]+I*b[2]-conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*(a[4]+I*b[4])^2-2*(-3/2*conjugate(a[2]+I*b[2])*(a[2]+I*b[2]-conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*conjugate(a[4]+I*b[4])*(a[4]+I*b[4])+beta*conjugate(a[4]+I*b[4])^2)*exp((a[2]+I*b[2])*((a[4]+I*b[4])*y+x)+a[3]+I*b[3]+conjugate(a[2]+I*b[2])*(conjugate(a[4]+I*b[4])*y+x)+conjugate(a[3]+I*b[3]))/((-3*(a[2]+I*b[2])*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*(a[4]+I*b[4])^2-2*(3/2*conjugate(a[2]+I*b[2])*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*conjugate(a[4]+I*b[4])*(a[4]+I*b[4])+beta*conjugate(a[4]+I*b[4])^2)) to be plotted but found names [beta, a[1], a[2], a[3], a[4], b[1], b[2], b[3], b[4]]

 

i have an equilibrium, i want to simplify SEkuil_End[1] but with R0 eq in the simplify, how can i do that?

restart

with(VectorCalculus):

with(linalg):

with(DETools):

with(DynamicSystems):

_local(I):

I

 

Warning, The imaginary unit, I, has been renamed _I

 

dS := VectorCalculus:-`+`(VectorCalculus:-`+`(Lambda, VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(alpha, S), P))), VectorCalculus:-`-`(VectorCalculus:-`*`(mu, S)));

-P*S*alpha-S*mu+Lambda

 

alpha*S*P-(-T*eta+1)*beta*E-theta*E-mu*E

 

(-T*eta+1)*beta*E-delta*I-gamma*I-mu*I

 

E*theta+I*gamma-R*mu

 

-P*T*sigma+I*xi-P*tau

 

r*T*(1-T/K)-phi*T

(1)

SEkuil := solve({dE, dI, dP, dR, dS, dT}, {E, I, P, R, S, T}):

SEkuil_End := SEkuil[4]:

R0 := VectorCalculus:-`*`(VectorCalculus:-`*`(VectorCalculus:-`*`(VectorCalculus:-`*`(VectorCalculus:-`*`(VectorCalculus:-`*`(Lambda, alpha), beta), r), xi), VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`*`(VectorCalculus:-`*`(K, eta), r), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(K, eta), phi))), VectorCalculus:-`-`(r))), 1/VectorCalculus:-`*`(VectorCalculus:-`*`(VectorCalculus:-`*`(mu, VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`*`(VectorCalculus:-`*`(K, phi), sigma), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(K, r), sigma))), VectorCalculus:-`-`(VectorCalculus:-`*`(r, tau)))), VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`*`(VectorCalculus:-`*`(VectorCalculus:-`*`(K, beta), eta), phi), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(VectorCalculus:-`*`(K, beta), eta), r))), VectorCalculus:-`*`(beta, r)), VectorCalculus:-`*`(mu, r)), VectorCalculus:-`*`(r, theta))), VectorCalculus:-`+`(VectorCalculus:-`+`(delta, gamma), mu)));

Lambda*alpha*beta*r*xi*(-K*eta*phi+K*eta*r-r)/(mu*(K*phi*sigma-K*r*sigma-r*tau)*(K*beta*eta*phi-K*beta*eta*r+beta*r+mu*r+r*theta)*(delta+gamma+mu))

(2)

SEkuil_End[1]

E = (K^2*beta*delta*eta*mu*phi^2*sigma-2*K^2*beta*delta*eta*mu*phi*r*sigma+K^2*beta*delta*eta*mu*r^2*sigma+K^2*beta*eta*gamma*mu*phi^2*sigma-2*K^2*beta*eta*gamma*mu*phi*r*sigma+K^2*beta*eta*gamma*mu*r^2*sigma+K^2*beta*eta*mu^2*phi^2*sigma-2*K^2*beta*eta*mu^2*phi*r*sigma+K^2*beta*eta*mu^2*r^2*sigma+K*Lambda*alpha*beta*eta*phi*r*xi-K*Lambda*alpha*beta*eta*r^2*xi-K*beta*delta*eta*mu*phi*r*tau+K*beta*delta*eta*mu*r^2*tau-K*beta*eta*gamma*mu*phi*r*tau+K*beta*eta*gamma*mu*r^2*tau-K*beta*eta*mu^2*phi*r*tau+K*beta*eta*mu^2*r^2*tau+K*beta*delta*mu*phi*r*sigma-K*beta*delta*mu*r^2*sigma+K*beta*gamma*mu*phi*r*sigma-K*beta*gamma*mu*r^2*sigma+K*beta*mu^2*phi*r*sigma-K*beta*mu^2*r^2*sigma+K*delta*mu^2*phi*r*sigma-K*delta*mu^2*r^2*sigma+K*delta*mu*phi*r*sigma*theta-K*delta*mu*r^2*sigma*theta+K*gamma*mu^2*phi*r*sigma-K*gamma*mu^2*r^2*sigma+K*gamma*mu*phi*r*sigma*theta-K*gamma*mu*r^2*sigma*theta+K*mu^3*phi*r*sigma-K*mu^3*r^2*sigma+K*mu^2*phi*r*sigma*theta-K*mu^2*r^2*sigma*theta+Lambda*alpha*beta*r^2*xi-beta*delta*mu*r^2*tau-beta*gamma*mu*r^2*tau-beta*mu^2*r^2*tau-delta*mu^2*r^2*tau-delta*mu*r^2*tau*theta-gamma*mu^2*r^2*tau-gamma*mu*r^2*tau*theta-mu^3*r^2*tau-mu^2*r^2*tau*theta)/((K*eta*phi-K*eta*r+r)*xi*beta*(K*beta*eta*phi-K*beta*eta*r+beta*r+mu*r+r*theta)*alpha)

(3)
 

``

Download end.mw

I am trying to set up a new tensor expression (r^hat is my unit vector):  

Can someone show me how to do it and/or point me to the right help page? 

The first part of the equation works but the rest does not. How do I get around the problem with the different indices? Another problem I have is that KroneckerDelta is no longer a tensor. Is there a way to define it as such?

with(Physics); Setup(mathematicalnotation = true)

with(Vectors)NULL

Setup(spacetimeindices = greek, spaceindices = lowercaselatin, su2indices = uppercaselatin, signature = `- - - +`, coordinates = cartesian)

[coordinatesystems = {X}, signature = `- - - +`, spaceindices = lowercaselatin, spacetimeindices = greek, su2indices = uppercaselatin]
````

(1)

Define(A[mu, a] = (1-fA(r))/(g*r)*(LeviCivita[a, nu, mu, 4]*X[nu]/r))

{R, A[mu, a], Physics:-Dgamma[mu], Physics:-Psigma[mu], Physics:-d_[mu], Physics:-g_[mu, nu], Physics:-gamma_[a, b], Physics:-LeviCivita[alpha, beta, mu, nu], Physics:-SpaceTimeVector[mu](X)}

(2)

A[]

A[mu, a] = Matrix(%id = 36893490522608139428)

(3)

Define(V[mu, a] = (1-fA(r))/(g*r)*(LeviCivita[a, nu, mu, 4]*X[nu]/r)-fB(r)*(KroneckerDelta[i, j]-X[i]*X[j]/r^2)/gr+fC(r)*X[i]*X[j]/(gr*r^2))

Error, (in Physics:-Define) found different free indices in different operands of a sum; in operand 1: [], in operand 2: [i, j], in `+`(Physics:-KroneckerDelta[i,j],-Physics:-SpaceTimeVector[i](x,y,z,t)*Physics:-SpaceTimeVector[j](x,y,z,t)/r^2)

 

NULL

Download V_Tensor.mw

I am trying to draw the Poincare section diagram related pendulum problem, article is shared below. I can not understand and code gives error, can you help me to draw Poincare section Fig. 4 of attached article?7._Energy_distribution_in_intrinsically_coupled_system [moderator: URL changed to respect IP, as per Mapleprimes Terms of Use]

pendulum.mw

Performing a search brought some results from wamp.mapleprimes.com. 

I clicked on it and firefox gave me a warning.  Is wamp.mapleprimes.com a legitamate site???

I believe I found I bug.

The 'next' statement for loop control will not work in 2D Input but it does in Code Edit Region.

From the documentation on 'next', I copied the following code into a 2D input in a document. 

Running it results in Error, invalid expression for eval; id=54 which is a missing help page.

for i to 4 do
    for j to 4 do
       print([i, j]);
         if i = j then next i;
        end if;
   end do;
end do

However 'next' without a following integer/name works fine in both 2D Input and Code Edit Region.

So is there only a subset of Maple code that will work in 2D Input?

I have calculated an expression which depends on functions. I would now like to calculate the derivative withe respect to a function  but when I try to do so I get the error “Deriving a functional ”Error, invalid input: diff received fA(r), which is not valid for its 2nd argument. There is no help page available for this error, so maybe someone knows what I am doing wrong .

I get this is because die diff function might not be able to handel a function as an argument, but how would I do it? 

L := -r^2*((-fA(r)^4+(-2*fB(r)^2-2*fC(r)^2+2)*fA(r)^2+4*(D(fB))(r)*fA(r)*fC(r)*r-fB(r)^4+(-2*fC(r)^2+2)*fB(r)^2-4*fB(r)*fC(r)*(D(fA))(r)*r-2*r^2*(D(fA))(r)^2-1-2*r^2*(D(fB))(r)^2)/(2*g^2*r^4)+(r*(fB(r)^2+(1/2)*fC(r)^2+fA(r)^2-2*fA(r)+1)*H(r)^2+(-(D(K))(r)*r^2*fC(r)-2*K(r)*fB(r)*r)*H(r)+(1/2)*K(r)^2*fC(r)^2*r+(D(H))(r)*K(r)*r^2*fC(r)+r*((fB(r)^2+fA(r)^2)*K(r)^2+(1/2)*r^2*((D(H))(r)^2+(D(K))(r)^2)))*v^2/(r^2)^(3/2)-lambda((1/2)*(K(r)^2+H(r)^2-1)*v^2)^2)

-r^2*((1/2)*(-fA(r)^4+(-2*fB(r)^2-2*fC(r)^2+2)*fA(r)^2+4*(D(fB))(r)*fA(r)*fC(r)*r-fB(r)^4+(-2*fC(r)^2+2)*fB(r)^2-4*fB(r)*fC(r)*(D(fA))(r)*r-2*r^2*(D(fA))(r)^2-1-2*r^2*(D(fB))(r)^2)/(g^2*r^4)+(r*(fB(r)^2+(1/2)*fC(r)^2+fA(r)^2-2*fA(r)+1)*H(r)^2+(-(D(K))(r)*r^2*fC(r)-2*K(r)*fB(r)*r)*H(r)+(1/2)*K(r)^2*fC(r)^2*r+(D(H))(r)*K(r)*r^2*fC(r)+r*((fB(r)^2+fA(r)^2)*K(r)^2+(1/2)*r^2*((D(H))(r)^2+(D(K))(r)^2)))*v^2/(r^2)^(3/2)-lambda((1/2)*(K(r)^2+H(r)^2-1)*v^2)^2)

(1)

diff(L, fA(r))

Error, invalid input: diff received fA(r), which is not valid for its 2nd argument

 
 

``

Download test_funtion.mw

Hi,

Is there a way to vary C in steps of fractions of Pi ? Thanks

Q_Pi_scaling.mw

What am I missing here?  I type in a simple differential equation and I get .. unable to parse error.

For practice, I would like to calculate the left-hand limit according to the attached file. The computer does not finish. The result pi^2/6 is known from a calculation "on foot".

restart

``

limit((1-t)^2*(sum(k*t^k/(1-t^k), k = 1 .. infinity)), t = 1, left)

limit((1-t)^2*(sum(k*t^k/(1-t^k), k = 1 .. infinity)), t = 1, left)

(1)

"(->)"``

``

Download test.mwtest.mw

Hello, an interesting issue about set equivalence.

Logically, the two sets are equivalent by derivation.

The first principal case, for set A, k=0, the element values ​​are Pi/6 and 5*Pi/6, which corresponds to the case of k=0 (element value is Pi/6) and k=1 (element value is 5*Pi/6) in set B. Obviously, the k value is not one-to-one correspondence, but just a letter representing a positive integer. As for the second general case, it is the same steps I thought.

So, how to verify that the two sets are equivalent? I know Maple cannot do it in one step, but I don't know how to do it?

A := solve(sin(x) = 1/2, allsolutions = true)

(1/6)*Pi+2*Pi*_Z5, (5/6)*Pi+2*Pi*_Z5

(1)

A := `assuming`([`union`({(1/6)*Pi+2*k*Pi}, {Pi-(1/6)*Pi+2*k*Pi})], [k::integer])

{(1/6)*Pi+2*k*Pi, (5/6)*Pi+2*k*Pi}

(2)

B := `assuming`([{k*Pi+(1/6)*(-1)^k*Pi}], [k::integer])

{k*Pi+(1/6)*(-1)^k*Pi}

(3)

is(A = B)

false

(4)

restart

alpha = 'alpha'

alpha = alpha

(5)

solve(sin(x) = alpha, x, allsolutions = true)

2*Pi*_Z1+arcsin(alpha), -arcsin(alpha)+Pi+2*Pi*_Z1

(6)

A := `assuming`([`union`({arcsin(alpha)+2*k*Pi}, {Pi-arcsin(alpha)+2*k*Pi})], [k::integer])

{arcsin(alpha)+2*k*Pi, Pi-arcsin(alpha)+2*k*Pi}

(7)

B := `assuming`([{k*Pi+(-1)^k*arcsin(alpha)}], [k::integer])

{k*Pi+(-1)^k*arcsin(alpha)}

(8)

is(A = B)

false

(9)
 

NULL

Download verify_set_A_and_set_B_is_equivalent.mw

I have Maple 2024 and successfully loaded the FeynmanIntegral package with:

with(Physics); with(FeynmanIntegral);

Maple confirms that FeynmanIntegral is loaded by displaying:

[Evaluate, ExpandDimension, FromAbstractRepresentation, Parametrize, Series, SumLookup, TensorBasis, TensorReduce, ToAbstractRepresentation, epsilon, varepsilon]

However, when I attempt to evaluate a Feynman integral, Maple only displays the unevaluated expression instead of computing it:

Delta(q); %FeynmanIntegral(1/p^2*1/(p + q)^2, p);

And explicitly calling Evaluate() does not compute the result:

Evaluate(Delta(q));

  1. Using Evaluate() explicitly:

    FeynmanIntegral:-Evaluate(1 / (p^2 * (p + q)^2), p);

    Result: No evaluation, only displays the input.

  2. Assigning the integral to a variable before evaluating:

    I := FeynmanIntegral(1 / (p^2 * (p + q)^2), p); Evaluate(I);

    Result: Still does not evaluate.

  3. Using dimension= instead of d= when specifying the spacetime dimension:

    FeynmanIntegral:-Evaluate(1 / (p^2 * (p + q)^2), p, dimension = 4 - 2*epsilon);

    Result: No evaluation.

  4. Checking if FeynmanIntegral functions exist:

    showstat(FeynmanIntegral);

    Result: The package seems loaded, but it does not execute calculations.

I expect FeynmanIntegral:-Evaluate(...) to automatically compute the dimensional integral using Feynman rules and return a result.

  1. Is FeynmanIntegral:-Evaluate() broken in Maple 2024?
  2. Are there additional setup steps needed to enable full functionality?
  3. Has anyone successfully used FeynmanIntegral for automatic dimensional integration?
  4. Are there alternative Maple functions/packages for computing Feynman integrals in dimensional regularization?

Any help would be greatly appreciated!

this function i have is so long and my parameter are twenty they are two much when i make a change in explore i the change is so slow and i can't see some of this parameter how act to figure when i change becuase the placement of parameters i want some of parameter being in right  and some of them being in right  and figure be in the middle for see them together can we do something like that?

figure.mw

How do we simplify the arguments of the exponential in (1)? Further how to express (1) into hyperbolic/trig functions? 
 

restart

with(LinearAlgebra)

Bans := -8*delta2*delta4*delta1*(delta3^2+delta4^2)*exp((-(2*I)*y*a*(delta3^2+delta4^2)*delta1^3+((2*I)*y*delta3^3*a+(x+y+t)^2*(B2+B1+B3+B4)*delta3^2+((2*I)*y*delta4^2*a-I*t)*delta3+delta4^2*(x+y+t)^2*(B2+B1+B3+B4))*delta1^2-(2*I)*(y*delta2^2*a-(1/2)*t)*(delta3^2+delta4^2)*delta1+(2*(I*y*delta3^3*a+(1/2)*(x+y+t)^2*(B2+B1+B3+B4)*delta3^2+(-I*t*(1/2)+I*y*delta4^2*a)*delta3+(1/2)*delta4^2*(x+y+t)^2*(B2+B1+B3+B4)))*delta2^2)/((delta1+I*delta2)*(I*delta4-delta3)*(delta3+I*delta4)*(I*delta2-delta1)))-8*delta2*delta3*delta4*(delta1^2+delta2^2)*exp(((2*I)*y*a*(delta3^2+delta4^2)*delta1^3+(-(2*I)*y*delta3^3*a+(x+y+t)^2*(B2+B1+B3+B4)*delta3^2+(-(2*I)*y*delta4^2*a+I*t)*delta3+delta4^2*(x+y+t)^2*(B2+B1+B3+B4))*delta1^2+(2*I)*(y*delta2^2*a-(1/2)*t)*(delta3^2+delta4^2)*delta1-(2*(I*y*delta3^3*a-(1/2)*(x+y+t)^2*(B2+B1+B3+B4)*delta3^2+(-I*t*(1/2)+I*y*delta4^2*a)*delta3-(1/2)*delta4^2*(x+y+t)^2*(B2+B1+B3+B4)))*delta2^2)/((delta1+I*delta2)*(I*delta4-delta3)*(delta3+I*delta4)*(I*delta2-delta1)))+(delta2^2-2*delta4*delta2+delta4^2+(delta3-delta1)^2)*((delta3+I*delta4)*delta2^2+(I*delta3^2+I*delta4^2)*delta2+delta1*(delta4^2+I*delta4*delta1+delta3*(delta3+delta1)))*exp((-2*y*a*(delta3^2+delta4^2)*delta2^3+(-2*y*delta4^3*a+2*(x+y+t)^2*(B1+B3)*delta4^2+(-2*a*delta3^2*y-t)*delta4+2*delta3^2*(x+y+t)^2*(B1+B3))*delta2^2-(2*(delta3^2+delta4^2))*(y*a*delta1^2+(1/2)*t)*delta2+2*delta1^2*(-y*delta4^3*a+(x+y+t)^2*(B1+B3)*delta4^2+(-(1/2)*t-y*a*delta3^2)*delta4+delta3^2*(x+y+t)^2*(B1+B3)))/((delta1+I*delta2)*(I*delta4-delta3)*(delta3+I*delta4)*(I*delta2-delta1)))+(delta2^2+2*delta4*delta2+delta4^2+(delta3-delta1)^2)*((delta3+I*delta4)*delta2^2+(-I*delta3^2-I*delta4^2)*delta2+delta1*(delta4^2+I*delta4*delta1+delta3*(delta3+delta1)))*exp((2*y*a*(delta3^2+delta4^2)*delta2^3+(-2*y*delta4^3*a+2*(x+y+t)^2*(B2+B3)*delta4^2+(-2*a*delta3^2*y-t)*delta4+2*delta3^2*(x+y+t)^2*(B2+B3))*delta2^2+(2*(delta3^2+delta4^2))*(y*a*delta1^2+(1/2)*t)*delta2+2*delta1^2*(-y*delta4^3*a+(x+y+t)^2*(B2+B3)*delta4^2+(-(1/2)*t-y*a*delta3^2)*delta4+delta3^2*(x+y+t)^2*(B2+B3)))/((delta1+I*delta2)*(I*delta4-delta3)*(delta3+I*delta4)*(I*delta2-delta1)))-(delta2^2+2*delta4*delta2+delta4^2+(delta3-delta1)^2)*((I*delta4-delta3)*delta2^2+(-I*delta3^2-I*delta4^2)*delta2+delta1*(-delta4^2+I*delta4*delta1-delta3*(delta3+delta1)))*exp((-2*y*a*(delta3^2+delta4^2)*delta2^3+(2*y*delta4^3*a+2*(x+y+t)^2*(B1+B4)*delta4^2+(2*a*delta3^2*y+t)*delta4+2*delta3^2*(x+y+t)^2*(B1+B4))*delta2^2-(2*(delta3^2+delta4^2))*(y*a*delta1^2+(1/2)*t)*delta2+(2*(y*delta4^3*a+(x+y+t)^2*(B1+B4)*delta4^2+(y*a*delta3^2+(1/2)*t)*delta4+delta3^2*(x+y+t)^2*(B1+B4)))*delta1^2)/((delta1+I*delta2)*(I*delta4-delta3)*(delta3+I*delta4)*(I*delta2-delta1)))-(delta2^2-2*delta4*delta2+delta4^2+(delta3-delta1)^2)*((I*delta4-delta3)*delta2^2+(I*delta3^2+I*delta4^2)*delta2+delta1*(-delta4^2+I*delta4*delta1-delta3*(delta3+delta1)))*exp((2*y*a*(delta3^2+delta4^2)*delta2^3+(2*y*delta4^3*a+2*(x+y+t)^2*(B2+B4)*delta4^2+(2*a*delta3^2*y+t)*delta4+2*delta3^2*(x+y+t)^2*(B2+B4))*delta2^2+(2*(delta3^2+delta4^2))*(y*a*delta1^2+(1/2)*t)*delta2+(2*(y*delta4^3*a+(x+y+t)^2*(B2+B4)*delta4^2+(y*a*delta3^2+(1/2)*t)*delta4+delta3^2*(x+y+t)^2*(B2+B4)))*delta1^2)/((delta1+I*delta2)*(I*delta4-delta3)*(delta3+I*delta4)*(I*delta2-delta1)))

-8*delta2*delta4*delta1*(delta3^2+delta4^2)*exp((-(2*I)*y*a*(delta3^2+delta4^2)*delta1^3+((2*I)*y*delta3^3*a+(x+y+t)^2*(B2+B1+B3+B4)*delta3^2+((2*I)*y*delta4^2*a-I*t)*delta3+delta4^2*(x+y+t)^2*(B2+B1+B3+B4))*delta1^2-(2*I)*(y*delta2^2*a-(1/2)*t)*(delta3^2+delta4^2)*delta1+2*(I*y*delta3^3*a+(1/2)*(x+y+t)^2*(B2+B1+B3+B4)*delta3^2+(-((1/2)*I)*t+I*y*delta4^2*a)*delta3+(1/2)*delta4^2*(x+y+t)^2*(B2+B1+B3+B4))*delta2^2)/((delta1+I*delta2)*(I*delta4-delta3)*(delta3+I*delta4)*(I*delta2-delta1)))-8*delta2*delta3*delta4*(delta1^2+delta2^2)*exp(((2*I)*y*a*(delta3^2+delta4^2)*delta1^3+(-(2*I)*y*delta3^3*a+(x+y+t)^2*(B2+B1+B3+B4)*delta3^2+(-(2*I)*y*delta4^2*a+I*t)*delta3+delta4^2*(x+y+t)^2*(B2+B1+B3+B4))*delta1^2+(2*I)*(y*delta2^2*a-(1/2)*t)*(delta3^2+delta4^2)*delta1-2*(I*y*delta3^3*a-(1/2)*(x+y+t)^2*(B2+B1+B3+B4)*delta3^2+(-((1/2)*I)*t+I*y*delta4^2*a)*delta3-(1/2)*delta4^2*(x+y+t)^2*(B2+B1+B3+B4))*delta2^2)/((delta1+I*delta2)*(I*delta4-delta3)*(delta3+I*delta4)*(I*delta2-delta1)))+(delta2^2-2*delta4*delta2+delta4^2+(delta3-delta1)^2)*((delta3+I*delta4)*delta2^2+(I*delta3^2+I*delta4^2)*delta2+delta1*(delta4^2+I*delta4*delta1+delta3*(delta3+delta1)))*exp((-2*y*a*(delta3^2+delta4^2)*delta2^3+(-2*y*delta4^3*a+2*(x+y+t)^2*(B1+B3)*delta4^2+(-2*a*delta3^2*y-t)*delta4+2*delta3^2*(x+y+t)^2*(B1+B3))*delta2^2-2*(delta3^2+delta4^2)*(y*a*delta1^2+(1/2)*t)*delta2+2*delta1^2*(-y*delta4^3*a+(x+y+t)^2*(B1+B3)*delta4^2+(-(1/2)*t-y*a*delta3^2)*delta4+delta3^2*(x+y+t)^2*(B1+B3)))/((delta1+I*delta2)*(I*delta4-delta3)*(delta3+I*delta4)*(I*delta2-delta1)))+(delta2^2+2*delta4*delta2+delta4^2+(delta3-delta1)^2)*((delta3+I*delta4)*delta2^2+(-I*delta3^2-I*delta4^2)*delta2+delta1*(delta4^2+I*delta4*delta1+delta3*(delta3+delta1)))*exp((2*y*a*(delta3^2+delta4^2)*delta2^3+(-2*y*delta4^3*a+2*(x+y+t)^2*(B2+B3)*delta4^2+(-2*a*delta3^2*y-t)*delta4+2*delta3^2*(x+y+t)^2*(B2+B3))*delta2^2+2*(delta3^2+delta4^2)*(y*a*delta1^2+(1/2)*t)*delta2+2*delta1^2*(-y*delta4^3*a+(x+y+t)^2*(B2+B3)*delta4^2+(-(1/2)*t-y*a*delta3^2)*delta4+delta3^2*(x+y+t)^2*(B2+B3)))/((delta1+I*delta2)*(I*delta4-delta3)*(delta3+I*delta4)*(I*delta2-delta1)))-(delta2^2+2*delta4*delta2+delta4^2+(delta3-delta1)^2)*((I*delta4-delta3)*delta2^2+(-I*delta3^2-I*delta4^2)*delta2+delta1*(-delta4^2+I*delta4*delta1-delta3*(delta3+delta1)))*exp((-2*y*a*(delta3^2+delta4^2)*delta2^3+(2*y*delta4^3*a+2*(x+y+t)^2*(B1+B4)*delta4^2+(2*a*delta3^2*y+t)*delta4+2*delta3^2*(x+y+t)^2*(B1+B4))*delta2^2-2*(delta3^2+delta4^2)*(y*a*delta1^2+(1/2)*t)*delta2+2*(y*delta4^3*a+(x+y+t)^2*(B1+B4)*delta4^2+(y*a*delta3^2+(1/2)*t)*delta4+delta3^2*(x+y+t)^2*(B1+B4))*delta1^2)/((delta1+I*delta2)*(I*delta4-delta3)*(delta3+I*delta4)*(I*delta2-delta1)))-(delta2^2-2*delta4*delta2+delta4^2+(delta3-delta1)^2)*((I*delta4-delta3)*delta2^2+(I*delta3^2+I*delta4^2)*delta2+delta1*(-delta4^2+I*delta4*delta1-delta3*(delta3+delta1)))*exp((2*y*a*(delta3^2+delta4^2)*delta2^3+(2*y*delta4^3*a+2*(x+y+t)^2*(B2+B4)*delta4^2+(2*a*delta3^2*y+t)*delta4+2*delta3^2*(x+y+t)^2*(B2+B4))*delta2^2+2*(delta3^2+delta4^2)*(y*a*delta1^2+(1/2)*t)*delta2+2*(y*delta4^3*a+(x+y+t)^2*(B2+B4)*delta4^2+(y*a*delta3^2+(1/2)*t)*delta4+delta3^2*(x+y+t)^2*(B2+B4))*delta1^2)/((delta1+I*delta2)*(I*delta4-delta3)*(delta3+I*delta4)*(I*delta2-delta1)))

(1)

argexp1 := simplify((-(2*I)*y*a*(delta3^2+delta4^2)*delta1^3+((2*I)*y*delta3^3*a+(x+y+t)^2*(B2+B1+B3+B4)*delta3^2+((2*I)*y*delta4^2*a-I*t)*delta3+delta4^2*(x+y+t)^2*(B2+B1+B3+B4))*delta1^2-(2*I)*(y*delta2^2*a-(1/2)*t)*(delta3^2+delta4^2)*delta1+(2*(I*y*delta3^3*a+(1/2)*(x+y+t)^2*(B2+B1+B3+B4)*delta3^2+(-I*t*(1/2)+I*y*delta4^2*a)*delta3+(1/2)*delta4^2*(x+y+t)^2*(B2+B1+B3+B4)))*delta2^2)/((delta1+I*delta2)*(I*delta4-delta3)*(delta3+I*delta4)*(I*delta2-delta1)), size)

(-(2*I)*y*a*(delta3^2+delta4^2)*delta1^3+((2*I)*y*delta3^3*a+(x+y+t)^2*(B2+B1+B3+B4)*delta3^2+((2*I)*y*delta4^2*a-I*t)*delta3+delta4^2*(x+y+t)^2*(B2+B1+B3+B4))*delta1^2-(2*I)*(y*delta2^2*a-(1/2)*t)*(delta3^2+delta4^2)*delta1+2*(y*delta3^3*a*I+(1/2)*(x+y+t)^2*(B2+B1+B3+B4)*delta3^2+(-((1/2)*I)*t+y*delta4^2*a*I)*delta3+(1/2)*delta4^2*(x+y+t)^2*(B2+B1+B3+B4))*delta2^2)/((delta1+delta2*I)*(delta4*I-delta3)*(delta3+delta4*I)*(delta2*I-delta1))

(2)

 

argexp2 := ((2*I)*y*a*(delta3^2+delta4^2)*delta1^3+(-(2*I)*y*delta3^3*a+(x+y+t)^2*(B2+B1+B3+B4)*delta3^2+(-(2*I)*y*delta4^2*a+I*t)*delta3+delta4^2*(x+y+t)^2*(B2+B1+B3+B4))*delta1^2+(2*I)*(y*delta2^2*a-(1/2)*t)*(delta3^2+delta4^2)*delta1-(2*(I*y*delta3^3*a-(1/2)*(x+y+t)^2*(B2+B1+B3+B4)*delta3^2+(-I*t*(1/2)+I*y*delta4^2*a)*delta3-(1/2)*delta4^2*(x+y+t)^2*(B2+B1+B3+B4)))*delta2^2)/((delta1+I*delta2)*(I*delta4-delta3)*(delta3+I*delta4)*(I*delta2-delta1))

((2*I)*y*a*(delta3^2+delta4^2)*delta1^3+(-(2*I)*y*delta3^3*a+(x+y+t)^2*(B2+B1+B3+B4)*delta3^2+(-(2*I)*y*delta4^2*a+t*I)*delta3+delta4^2*(x+y+t)^2*(B2+B1+B3+B4))*delta1^2+(2*I)*(y*delta2^2*a-(1/2)*t)*(delta3^2+delta4^2)*delta1-2*(y*delta3^3*a*I-(1/2)*(x+y+t)^2*(B2+B1+B3+B4)*delta3^2+(-((1/2)*I)*t+y*delta4^2*a*I)*delta3-(1/2)*delta4^2*(x+y+t)^2*(B2+B1+B3+B4))*delta2^2)/((delta1+delta2*I)*(delta4*I-delta3)*(delta3+delta4*I)*(delta2*I-delta1))

(3)

simplify(argexp1+argexp2)

2*(x+y+t)^2*(B2+B1+B3+B4)

(4)

terms := op(Bans)

-8*delta2*delta4*delta1*(delta3^2+delta4^2)*exp((-(2*I)*y*a*(delta3^2+delta4^2)*delta1^3+((2*I)*y*delta3^3*a+(x+y+t)^2*(B2+B1+B3+B4)*delta3^2+((2*I)*y*delta4^2*a-I*t)*delta3+delta4^2*(x+y+t)^2*(B2+B1+B3+B4))*delta1^2-(2*I)*(y*delta2^2*a-(1/2)*t)*(delta3^2+delta4^2)*delta1+2*(I*y*delta3^3*a+(1/2)*(x+y+t)^2*(B2+B1+B3+B4)*delta3^2+(-((1/2)*I)*t+I*y*delta4^2*a)*delta3+(1/2)*delta4^2*(x+y+t)^2*(B2+B1+B3+B4))*delta2^2)/((delta1+I*delta2)*(I*delta4-delta3)*(delta3+I*delta4)*(I*delta2-delta1))), -8*delta2*delta3*delta4*(delta1^2+delta2^2)*exp(((2*I)*y*a*(delta3^2+delta4^2)*delta1^3+(-(2*I)*y*delta3^3*a+(x+y+t)^2*(B2+B1+B3+B4)*delta3^2+(-(2*I)*y*delta4^2*a+I*t)*delta3+delta4^2*(x+y+t)^2*(B2+B1+B3+B4))*delta1^2+(2*I)*(y*delta2^2*a-(1/2)*t)*(delta3^2+delta4^2)*delta1-2*(I*y*delta3^3*a-(1/2)*(x+y+t)^2*(B2+B1+B3+B4)*delta3^2+(-((1/2)*I)*t+I*y*delta4^2*a)*delta3-(1/2)*delta4^2*(x+y+t)^2*(B2+B1+B3+B4))*delta2^2)/((delta1+I*delta2)*(I*delta4-delta3)*(delta3+I*delta4)*(I*delta2-delta1))), (delta2^2-2*delta4*delta2+delta4^2+(delta3-delta1)^2)*((delta3+I*delta4)*delta2^2+(I*delta3^2+I*delta4^2)*delta2+delta1*(delta4^2+I*delta4*delta1+delta3*(delta3+delta1)))*exp((-2*y*a*(delta3^2+delta4^2)*delta2^3+(-2*y*delta4^3*a+2*(x+y+t)^2*(B1+B3)*delta4^2+(-2*a*delta3^2*y-t)*delta4+2*delta3^2*(x+y+t)^2*(B1+B3))*delta2^2-2*(delta3^2+delta4^2)*(y*a*delta1^2+(1/2)*t)*delta2+2*delta1^2*(-y*delta4^3*a+(x+y+t)^2*(B1+B3)*delta4^2+(-(1/2)*t-y*a*delta3^2)*delta4+delta3^2*(x+y+t)^2*(B1+B3)))/((delta1+I*delta2)*(I*delta4-delta3)*(delta3+I*delta4)*(I*delta2-delta1))), (delta2^2+2*delta4*delta2+delta4^2+(delta3-delta1)^2)*((delta3+I*delta4)*delta2^2+(-I*delta3^2-I*delta4^2)*delta2+delta1*(delta4^2+I*delta4*delta1+delta3*(delta3+delta1)))*exp((2*y*a*(delta3^2+delta4^2)*delta2^3+(-2*y*delta4^3*a+2*(x+y+t)^2*(B2+B3)*delta4^2+(-2*a*delta3^2*y-t)*delta4+2*delta3^2*(x+y+t)^2*(B2+B3))*delta2^2+2*(delta3^2+delta4^2)*(y*a*delta1^2+(1/2)*t)*delta2+2*delta1^2*(-y*delta4^3*a+(x+y+t)^2*(B2+B3)*delta4^2+(-(1/2)*t-y*a*delta3^2)*delta4+delta3^2*(x+y+t)^2*(B2+B3)))/((delta1+I*delta2)*(I*delta4-delta3)*(delta3+I*delta4)*(I*delta2-delta1))), -(delta2^2+2*delta4*delta2+delta4^2+(delta3-delta1)^2)*((I*delta4-delta3)*delta2^2+(-I*delta3^2-I*delta4^2)*delta2+delta1*(-delta4^2+I*delta4*delta1-delta3*(delta3+delta1)))*exp((-2*y*a*(delta3^2+delta4^2)*delta2^3+(2*y*delta4^3*a+2*(x+y+t)^2*(B1+B4)*delta4^2+(2*a*delta3^2*y+t)*delta4+2*delta3^2*(x+y+t)^2*(B1+B4))*delta2^2-2*(delta3^2+delta4^2)*(y*a*delta1^2+(1/2)*t)*delta2+2*(y*delta4^3*a+(x+y+t)^2*(B1+B4)*delta4^2+(y*a*delta3^2+(1/2)*t)*delta4+delta3^2*(x+y+t)^2*(B1+B4))*delta1^2)/((delta1+I*delta2)*(I*delta4-delta3)*(delta3+I*delta4)*(I*delta2-delta1))), -(delta2^2-2*delta4*delta2+delta4^2+(delta3-delta1)^2)*((I*delta4-delta3)*delta2^2+(I*delta3^2+I*delta4^2)*delta2+delta1*(-delta4^2+I*delta4*delta1-delta3*(delta3+delta1)))*exp((2*y*a*(delta3^2+delta4^2)*delta2^3+(2*y*delta4^3*a+2*(x+y+t)^2*(B2+B4)*delta4^2+(2*a*delta3^2*y+t)*delta4+2*delta3^2*(x+y+t)^2*(B2+B4))*delta2^2+2*(delta3^2+delta4^2)*(y*a*delta1^2+(1/2)*t)*delta2+2*(y*delta4^3*a+(x+y+t)^2*(B2+B4)*delta4^2+(y*a*delta3^2+(1/2)*t)*delta4+delta3^2*(x+y+t)^2*(B2+B4))*delta1^2)/((delta1+I*delta2)*(I*delta4-delta3)*(delta3+I*delta4)*(I*delta2-delta1)))

(5)

NULL


 

Download argument.mw

Hi everyone,

I'm trying to compute the cohomology group of some Lie algebras using the LieAlgebra package, but it appears that the Cohomology command doesn't provide the correct basis for the higher dimensional cohomology group, instead repeating up to the correct dimension only one element.

For example, with the following Lie algebra

L1:=_DG([["LieAlgebra", Alg1, [6]], [[[1, 3, 2], 1], [[1, 2, 3], -1], [[4, 6, 5], 1], [[4, 5, 6], -1]]])
DGSetup(L1)

the command

C := RelativeChains([])

does provide the correct k-forms on Alg1, but then

H := Cohomology(C)
provides
[[theta4,theta1],[theta1 &w theta4, theta1 &w theta4, theta1 &w theta4],[theta1 &w theta2 &w theta3,theta1 &w theta2 &w theta3,theta1 &w theta2 &w theta3,theta1 &w theta2 &w theta3], [theta1 &w theta2 &w theta3 &w theta4,theta1 &w theta2 &w theta3 &w theta4,theta1 &w theta2 &w theta3 &w theta4],[theta1 &w theta2 &w theta3 &w theta4 &w theta5 &w theta6, theta1 &w theta2 &w theta3 &w theta4 &w theta5 &w theta6], [theta1 &w theta2 &w theta3 &w theta4 &w theta5 &w theta6]

A similar thing does happen for the examples provided in the online help (e.g. example 1 from https://de.maplesoft.com/support/help/Maple/view.aspx?path=DifferentialGeometry/LieAlgebras/Cohomology). Is the command broken?

Any help is really appreciated.

First 25 26 27 28 29 30 31 Last Page 27 of 2425