MaplePrimes Questions

in this integral PDE author did a substitution and the integral is simplify and removing how i can do that as mention in picture i did try but i think need a technique

Download int.mw

All three expressions define the same initial velocity condition in different notations.
ic1 := u(x, 0) = f, D[2](u)(x, 0) = g
ic2 := u(x, 0) = f, diff(u(x, 0), t) = g;
ic3 := u(x, 0) = f, u__t(x, 0) = g;  

Why does only ic1 work while ic2 and ic3 do not? Should I use another way?

wave_equation_1D.mw

Working on updating a very large and out of date guidebook and I need the content of execution cells to be 'Text' for illustrative purposes. It's tedious to constantly have to hit F5 for every, single, new, cell as I'm working through this. Is there a way I can just have the default style be 'Text' instead of 'Math'?  I can't seem to find that as an option anywhere.

Ctrl-j/k work fine for inserting a new execution prompt, why doesn't there seem to be a short cut for a new text prompt?  Ctrl+shift+j/k just enters a new line in the current execution prompt.  I'm on Linux using Maplesoft 2024.

I'm doing something wrong again in the attached file. Please advise.

test.mw

Hi everyone,

I'm having some trouble with plotting in Maple and was hoping to get some help here. I'm trying to create a plot for a specific function, but I'm not sure if I'm using the right commands or parameters. Here’s what I’m trying to do:

To plot the line plot(E3,nu=10^13..4.5*10^18);

and 

plot(E1(nu),nu=10^13..4.5*10^18); 

you can look around my calculus please advise.

Could someone please explain what might be going wrong with my approach? Any suggestions or examples of correct usage would be greatly appreciated.

Thanks in advance for your help!PLanckPh.mw

Hi,

I am trying to create a series of exercises ( Generate Similar) with a table layout (2x3), but my approach is not optimal. Any suggestions? Thanks

GenerateSimilar_Test.mw

So, MaplePrimes is now accessible again after an unprecedented 5-day outage. What happened? There was no announcement of the outage beforehand, making it seem like an accident. How could it take 5 days to recover from an accident? I don't see any differences yet, so it doesn't seem as if the software that runs MaplePrimes was being updated. There's usually some official announcement of these things, but I don't see any.

Is it possible to reduce the space between the plot title and the 3dplot in the attached file?

Plot_title_too_high.mw

I am trying to do something that was recommended in

https://math.stackexchange.com/questions/4583857/how-to-use-recursion-to-define-a-number-series-in-maple

but can't get the desired sequnce. See for example my code

v := proc(m) option remember; return m; end proc;
k := 5:
v(k + 1) := 0:
v(k):=1:
for i from k - 1 by -1 to 1 do
    v(i);
end do;

I get the output 1,1,1,1

I don't get it.

When I write the following code, I get an error and I cannot plot the graph. 

Please, I would appreciate your support

 

restart;                                                                                                                                              with(plots):                                                                                                                                            h:=(u)->sin((0.3)*u^2);                                                                                                                                         K:=(r,v,u)-> (factorial(2*r+3)*v^r*u^(r+2))/(factoral(r)*factoral(r+2)*(v+u)^(2*r+4));                                         w:=(r,j,a,u)->(u^j-1)/((1+u)^(r+j-1))*((a*u/(1+u))*binomial(r+j-1,j)-(1-a)*(1+u)*binomial(r+j-3,j-2)+(1-a)*u*binomial(r+j-1,j));                                                                                                                                 B:=(r,a,u)->sum(w(r,j,a,u)*h(j/r),j=0..infinity);                                                                                                  H:=(r,a,u)->int(K(r,v,u)*B(r,a,v),v=0..infinity);                                                                                                  p1:=plot(h(u),u=-1.5*Pi..1.5*Pi,color=blue):                                                                                                    p2:=plot(B(10,0.9,u),u=-1.5*Pi..1.5*Pi,color=red):                                                                                        p3:=plot(H(10,0.9,u),u=-1.5*Pi..1.5*Pi,color=brown):                                                                                    display([p1,p2,p3]);

This is problem from INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014 ,  Chapter 2. First Order Equations. Exercises 2.4, page 57, problem 39

Maple 2024.2 can't solve it. But solution is arctan(t)-t*y(t)^2 = 0 which Maple verifies correct

restart;

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1848 and is the same as the version installed in this computer, created 2025, March 11, 16:9 hours Pacific Time.`

restart;

ode:=(1/(1+t^2)-y(t)^2)-(2*t*y(t))*diff(y(t),t)=0;
IC:=y(0)=0;

1/(t^2+1)-y(t)^2-2*t*y(t)*(diff(y(t), t)) = 0

y(0) = 0

sol:=dsolve([ode,IC])

mysol:=arctan(t)-t*y(t)^2 = 0;

arctan(t)-y(t)^2*t = 0

odetest(mysol,[ode,IC])

[0, 0]

 

 

Download can_not_dsolve_march_12_2025.mw

Any one has suggestion how to help dsolve find this solution?

Hey guys, 

I am solving many systems of polynomial equations. Sometimes I get the same solution, just in a diffrent are, so for example the first solution is for y between 0 and 1 and the second solution is for y between 1 and 2. So now I want to take those solutions intervals and combine them so I can make one solution out of two. However I am struggeling with working with intervals in Maple. It is not that easy how I expected it to be.

I wrote an own program which works quite nice unless there is a single solution which would meen an interval like [1,1] meaning y=1working_with_intervals.mw

restart; sets := [{1 < y}, {y <= 1/2, 0 < y}, {1/2 < y, y < 1}]; intervals := [RealRange(Open(1), Open(infinity)), RealRange(Open(0), 1/2), RealRange(Open(1/2), Open(1))]; correct_form := [y::(RealRange(Open(1), Open(infinity))), y::(RealRange(Open(0), 1/2)), y::(RealRange(Open(1/2), Open(1)))]; Sol := solve(`~`[convert](Or(op(correct_form)), relation))

[{1 < y}, {y <= 1/2, 0 < y}, {1/2 < y, y < 1}]

 

[RealRange(Open(1), infinity), RealRange(Open(0), 1/2), RealRange(Open(1/2), Open(1))]

 

[y::(RealRange(Open(1), infinity)), y::(RealRange(Open(0), 1/2)), y::(RealRange(Open(1/2), Open(1)))]

 

RealRange(Open(0), Open(1)), RealRange(Open(1), infinity)

(1)

restart; sets := [{1}, {1 < y}, {y <= 1/2, 0 < y}, {1/2 < y, y < 1}]; intervals := [[1, 1], RealRange(Open(1), Open(infinity)), RealRange(Open(0), 1/2), RealRange(Open(1/2), Open(1))]; correct_form := [y::[1, 1], y::(RealRange(Open(1), Open(infinity))), y::(RealRange(Open(0), 1/2)), y::(RealRange(Open(1/2), Open(1)))]; Sol := solve(`~`[convert](Or(op(correct_form)), relation))

[{1}, {1 < y}, {y <= 1/2, 0 < y}, {1/2 < y, y < 1}]

 

[[1, 1], RealRange(Open(1), infinity), RealRange(Open(0), 1/2), RealRange(Open(1/2), Open(1))]

 

[y::[1, 1], y::(RealRange(Open(1), infinity)), y::(RealRange(Open(0), 1/2)), y::(RealRange(Open(1/2), Open(1)))]

 

RealRange(Open(0), Open(1)), RealRange(Open(1), infinity)

(2)
 

NULL

Download working_with_intervals.mw

In the attached file you can see my problem. When I add the intervall [1,1] the solution should become (0,infty), but it seems like Maple does not understand what I mean by [1,1], so the 1 is not part of the solution "Sol".

FYI: I wrote a program which is able to convert "sets" into "intervals" into "correct_form" using RealRange, but it is not necesarry for my problem. 

So my questions are: Why doesnt Maple recognize [1,1] as an interval containing only the 1? Is there a way I can rewrite the intervall so I can use it for the solve process in "Sol"? I also thought about making two diffrent sets with the same intervals than adding [1,2) to the one set and (1,2) to the other set and than make an intersection but I seems to be very complicated for a seemingly easy problem. Is there a easier way to work with intervals? 

Regards and thank you

Felix

Hi,

In order to obtain an algebraic system, one must set the coeffcients of (H + G′/G2)i to zero. Solve the obtained algebraic system.

But the expressions were not arranged correctly, but no answer was obtained, while the answer was as follows:

 

``NULL

restart

with(PDEtools):
df:= diff(diff(G(xi), xi)/(G(xi)^2), xi)= A+B*(diff(G(xi), xi)/(G(xi)^2))^2+ c*(diff(G(xi), xi)/(G(xi)^2));

(diff(diff(G(xi), xi), xi))/G(xi)^2-2*(diff(G(xi), xi))^2/G(xi)^3 = A+B*(diff(G(xi), xi))^2/G(xi)^4+c*(diff(G(xi), xi))/G(xi)^2

(1)

a := [a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10]:

 

NULL

p:= -2: q:= 2:

Y1 :=xi -> (add(a[i+3]*(H+(diff(G(xi), xi)/(G(xi)^2)))^i, i = p .. q)):

NULL

eq1 := -4*(k^2)*m*diff(Y1(xi), xi,xi) - 4*l*(Y1(xi)^2)+(4*(nu^2)-4*nu*n+n^2-4)*Y1(xi):

eq2:=subs(df,eq1);

-4*k^2*m*(6*a0*(A+B*(diff(G(xi), xi))^2/G(xi)^4+c*(diff(G(xi), xi))/G(xi)^2)^2/(H+(diff(G(xi), xi))/G(xi)^2)^4-2*a0*((diff(diff(diff(G(xi), xi), xi), xi))/G(xi)^2-6*(diff(diff(G(xi), xi), xi))*(diff(G(xi), xi))/G(xi)^3+6*(diff(G(xi), xi))^3/G(xi)^4)/(H+(diff(G(xi), xi))/G(xi)^2)^3+2*a1*(A+B*(diff(G(xi), xi))^2/G(xi)^4+c*(diff(G(xi), xi))/G(xi)^2)^2/(H+(diff(G(xi), xi))/G(xi)^2)^3-a1*((diff(diff(diff(G(xi), xi), xi), xi))/G(xi)^2-6*(diff(diff(G(xi), xi), xi))*(diff(G(xi), xi))/G(xi)^3+6*(diff(G(xi), xi))^3/G(xi)^4)/(H+(diff(G(xi), xi))/G(xi)^2)^2+a3*((diff(diff(diff(G(xi), xi), xi), xi))/G(xi)^2-6*(diff(diff(G(xi), xi), xi))*(diff(G(xi), xi))/G(xi)^3+6*(diff(G(xi), xi))^3/G(xi)^4)+2*a4*(A+B*(diff(G(xi), xi))^2/G(xi)^4+c*(diff(G(xi), xi))/G(xi)^2)^2+2*a4*(H+(diff(G(xi), xi))/G(xi)^2)*((diff(diff(diff(G(xi), xi), xi), xi))/G(xi)^2-6*(diff(diff(G(xi), xi), xi))*(diff(G(xi), xi))/G(xi)^3+6*(diff(G(xi), xi))^3/G(xi)^4))-4*l*(a0/(H+(diff(G(xi), xi))/G(xi)^2)^2+a1/(H+(diff(G(xi), xi))/G(xi)^2)+a2+a3*(H+(diff(G(xi), xi))/G(xi)^2)+a4*(H+(diff(G(xi), xi))/G(xi)^2)^2)^2+(n^2-4*n*nu+4*nu^2-4)*(a0/(H+(diff(G(xi), xi))/G(xi)^2)^2+a1/(H+(diff(G(xi), xi))/G(xi)^2)+a2+a3*(H+(diff(G(xi), xi))/G(xi)^2)+a4*(H+(diff(G(xi), xi))/G(xi)^2)^2)

(2)

simplify(eq2):

fin1:=simplify(numer(%)):

``

for i from 0 to degree(fin1,H+(diff(G(xi), xi)/(G(xi)^2))) do EQ[i]:=simplify(coeff(fin1,H+(diff(G(xi), xi)/(G(xi)^2)),i)); end do;

4*k^2*(H*G(xi)^2+diff(G(xi), xi))*(-2*(diff(G(xi), xi))^4*a4-G(xi)^2*(8*H*a4+a3)*(diff(G(xi), xi))^3-3*G(xi)^4*H*(4*H*a4+a3)*(diff(G(xi), xi))^2+G(xi)^6*(-8*H^3*a4-3*H^2*a3+a1)*(diff(G(xi), xi))+G(xi)^8*(-2*H^4*a4-H^3*a3+H*a1+2*a0))*m*G(xi)^4*(diff(diff(diff(G(xi), xi), xi), xi))-24*(diff(G(xi), xi))*k^2*(H*G(xi)^2+diff(G(xi), xi))*(-2*(diff(G(xi), xi))^4*a4-G(xi)^2*(8*H*a4+a3)*(diff(G(xi), xi))^3-3*G(xi)^4*H*(4*H*a4+a3)*(diff(G(xi), xi))^2+G(xi)^6*(-8*H^3*a4-3*H^2*a3+a1)*(diff(G(xi), xi))+G(xi)^8*(-2*H^4*a4-H^3*a3+H*a1+2*a0))*m*G(xi)^3*(diff(diff(G(xi), xi), xi))-4*a4*(12*k^2*m*G(xi)^2+2*B^2*m*k^2+a4*l)*(diff(G(xi), xi))^8-8*G(xi)^2*(3*k^2*m*(10*H*a4+a3)*G(xi)^2+a4*((4*B^2*k^2*m+4*a4*l)*H+2*c*B*m*k^2+a3*l))*(diff(G(xi), xi))^7-16*(6*H*k^2*m*(5*H*a4+a3)*G(xi)^2+(3*B^2*a4*k^2*m+7*a4^2*l)*H^2+(7/2)*((8/7)*c*B*m*k^2+a3*l)*a4*H+(m*(B*A+(1/2)*c^2)*k^2+(1/2)*l*a2-(1/4)*(nu-(1/2)*n-1)*(nu-(1/2)*n+1))*a4+(1/4)*a3^2*l)*G(xi)^4*(diff(G(xi), xi))^6-64*G(xi)^6*(-(3/8)*k^2*m*(-20*H^3*a4-6*H^2*a3+a1)*G(xi)^2+((1/2)*k^2*m*B^2*a4+(7/2)*a4^2*l)*H^3+(21/8)*((4/7)*c*B*m*k^2+a3*l)*a4*H^2+((m*(B*A+(1/2)*c^2)*k^2+(3/4)*l*a2-(3/8)*(nu-(1/2)*n-1)*(nu-(1/2)*n+1))*a4+(3/8)*a3^2*l)*H+((1/4)*c*A*m*k^2+(1/8)*a1*l)*a4+(1/8)*a1*B^2*k^2*m+(1/8)*a3*(l*a2-(1/2)*(nu-(1/2)*n-1)*(nu-(1/2)*n+1)))*(diff(G(xi), xi))^5-8*G(xi)^8*(-6*k^2*m*(-5*H^4*a4-2*H^3*a3+H*a1+a0)*G(xi)^2+(B^2*a4*k^2*m+35*a4^2*l)*H^4+35*((8/35)*c*B*m*k^2+a3*l)*a4*H^3+(((12*A*B+6*c^2)*m*k^2+15*l*a2-(15/2)*(nu-(1/2)*n-1)*(nu-(1/2)*n+1))*a4+(15/2)*a3^2*l)*H^2+((8*A*c*k^2*m+5*a1*l)*a4+a1*B^2*k^2*m+5*a3*(l*a2-(1/2)*(nu-(1/2)*n-1)*(nu-(1/2)*n+1)))*H+(A^2*k^2*m+a0*l)*a4+(3*B^2*a0+2*B*a1*c)*m*k^2+(a1*a3+(1/2)*a2^2)*l-(1/2)*(nu-(1/2)*n-1)*a2*(nu-(1/2)*n+1))*(diff(G(xi), xi))^4-32*G(xi)^10*(-(3/4)*H*k^2*m*(-2*H^4*a4-H^3*a3+H*a1+2*a0)*G(xi)^2+7*H^5*a4^2*l+(35/4)*((2/35)*c*B*m*k^2+a3*l)*a4*H^4+((m*(2*A*B+c^2)*k^2+5*l*a2-(5/2)*(nu-(1/2)*n-1)*(nu-(1/2)*n+1))*a4+(5/2)*a3^2*l)*H^3+(((5/2)*a1*l+3*c*A*m*k^2)*a4+(5/2)*a3*(l*a2-(1/2)*(nu-(1/2)*n-1)*(nu-(1/2)*n+1)))*H^2+((A^2*k^2*m+a0*l)*a4+(1/2)*k^2*m*B*a1*c+(a1*a3+(1/2)*a2^2)*l-(1/2)*(nu-(1/2)*n-1)*a2*(nu-(1/2)*n+1))*H+(1/2)*((B*A+(1/2)*c^2)*a1+3*B*a0*c)*m*k^2+((1/4)*a0*a3+(1/4)*a1*a2)*l-(1/8)*(nu-(1/2)*n-1)*a1*(nu-(1/2)*n+1))*(diff(G(xi), xi))^3-48*((7/3)*H^6*a4^2*l+(7/2)*H^5*a3*a4*l+(((1/3)*m*(B*A+(1/2)*c^2)*k^2+(5/2)*l*a2-(5/4)*(nu-(1/2)*n-1)*(nu-(1/2)*n+1))*a4+(5/4)*a3^2*l)*H^4+(((5/3)*a1*l+(4/3)*c*A*m*k^2)*a4+(5/3)*a3*(l*a2-(1/2)*(nu-(1/2)*n-1)*(nu-(1/2)*n+1)))*H^3+((A^2*k^2*m+a0*l)*a4+(a1*a3+(1/2)*a2^2)*l-(1/2)*(nu-(1/2)*n-1)*a2*(nu-(1/2)*n+1))*H^2+((1/3)*(B*A+(1/2)*c^2)*a1*m*k^2+((1/2)*a0*a3+(1/2)*a1*a2)*l-(1/4)*(nu-(1/2)*n-1)*a1*(nu-(1/2)*n+1))*H+(1/3)*m*(A*a1*c+3*(B*A+(1/2)*c^2)*a0)*k^2+((1/6)*a0*a2+(1/12)*a1^2)*l-(1/12)*(nu-(1/2)*n-1)*a0*(nu-(1/2)*n+1))*G(xi)^12*(diff(G(xi), xi))^2-8*(4*a4^2*H^7*l+7*a3*a4*H^6*l+((6*l*a2+3*nu*n-3*nu^2-(3/4)*n^2+3)*a4+3*a3^2*l)*H^5+((2*A*c*k^2*m+5*a1*l)*a4+5*a3*(l*a2-(1/2)*(nu-(1/2)*n-1)*(nu-(1/2)*n+1)))*H^4+((4*A^2*k^2*m+4*a0*l)*a4+(4*a1*a3+2*a2^2)*l-2*(nu-(1/2)*n-1)*a2*(nu-(1/2)*n+1))*H^3+((3*a0*a3+3*a1*a2)*l-(3/2)*(nu-(1/2)*n-1)*a1*(nu-(1/2)*n+1))*H^2+(2*k^2*m*A*a1*c+(2*a0*a2+a1^2)*l-(nu-(1/2)*n-1)*a0*(nu-(1/2)*n+1))*H+A*m*(A*a1+6*a0*c)*k^2+a1*l*a0)*G(xi)^14*(diff(G(xi), xi))-8*G(xi)^16*((1/2)*H^8*a4^2*l+H^7*a3*a4*l+((l*a2-(1/2)*(nu-(1/2)*n-1)*(nu-(1/2)*n+1))*a4+(1/2)*a3^2*l)*H^6+(a1*a4*l+a3*(l*a2-(1/2)*(nu-(1/2)*n-1)*(nu-(1/2)*n+1)))*H^5+((A^2*k^2*m+a0*l)*a4+(a1*a3+(1/2)*a2^2)*l-(1/2)*(nu-(1/2)*n-1)*a2*(nu-(1/2)*n+1))*H^4+((a0*a3+a1*a2)*l-(1/2)*(nu-(1/2)*n-1)*a1*(nu-(1/2)*n+1))*H^3+(((1/2)*a1^2+a0*a2)*l-(1/2)*(nu-(1/2)*n-1)*a0*(nu-(1/2)*n+1))*H^2+a1*(A^2*k^2*m+a0*l)*H+(1/2)*a0^2*l+3*k^2*m*A^2*a0)

(3)

 

NULL

for i from 0 to degree(fin1,H+(diff(G(xi), xi)/(G(xi)^2))) do EQ[i]:=simplify(coeff(fin1,H+(diff(G(xi), xi)/(G(xi)^2)),i)); end do;

4*k^2*(H*G(xi)^2+diff(G(xi), xi))*(-2*(diff(G(xi), xi))^4*a4-G(xi)^2*(8*H*a4+a3)*(diff(G(xi), xi))^3-3*G(xi)^4*H*(4*H*a4+a3)*(diff(G(xi), xi))^2+G(xi)^6*(-8*H^3*a4-3*H^2*a3+a1)*(diff(G(xi), xi))+G(xi)^8*(-2*H^4*a4-H^3*a3+H*a1+2*a0))*m*G(xi)^4*(diff(diff(diff(G(xi), xi), xi), xi))-24*(diff(G(xi), xi))*k^2*(H*G(xi)^2+diff(G(xi), xi))*(-2*(diff(G(xi), xi))^4*a4-G(xi)^2*(8*H*a4+a3)*(diff(G(xi), xi))^3-3*G(xi)^4*H*(4*H*a4+a3)*(diff(G(xi), xi))^2+G(xi)^6*(-8*H^3*a4-3*H^2*a3+a1)*(diff(G(xi), xi))+G(xi)^8*(-2*H^4*a4-H^3*a3+H*a1+2*a0))*m*G(xi)^3*(diff(diff(G(xi), xi), xi))-4*a4*(12*k^2*m*G(xi)^2+2*B^2*m*k^2+a4*l)*(diff(G(xi), xi))^8-8*G(xi)^2*(3*k^2*m*(10*H*a4+a3)*G(xi)^2+a4*((4*B^2*k^2*m+4*a4*l)*H+2*c*B*m*k^2+a3*l))*(diff(G(xi), xi))^7-16*(6*H*k^2*m*(5*H*a4+a3)*G(xi)^2+(3*B^2*a4*k^2*m+7*a4^2*l)*H^2+(7/2)*((8/7)*c*B*m*k^2+a3*l)*a4*H+(m*(B*A+(1/2)*c^2)*k^2+(1/2)*l*a2-(1/4)*(nu-(1/2)*n-1)*(nu-(1/2)*n+1))*a4+(1/4)*a3^2*l)*G(xi)^4*(diff(G(xi), xi))^6-64*G(xi)^6*(-(3/8)*k^2*m*(-20*H^3*a4-6*H^2*a3+a1)*G(xi)^2+((1/2)*k^2*m*B^2*a4+(7/2)*a4^2*l)*H^3+(21/8)*((4/7)*c*B*m*k^2+a3*l)*a4*H^2+((m*(B*A+(1/2)*c^2)*k^2+(3/4)*l*a2-(3/8)*(nu-(1/2)*n-1)*(nu-(1/2)*n+1))*a4+(3/8)*a3^2*l)*H+((1/4)*c*A*m*k^2+(1/8)*a1*l)*a4+(1/8)*a1*B^2*k^2*m+(1/8)*a3*(l*a2-(1/2)*(nu-(1/2)*n-1)*(nu-(1/2)*n+1)))*(diff(G(xi), xi))^5-8*G(xi)^8*(-6*k^2*m*(-5*H^4*a4-2*H^3*a3+H*a1+a0)*G(xi)^2+(B^2*a4*k^2*m+35*a4^2*l)*H^4+35*((8/35)*c*B*m*k^2+a3*l)*a4*H^3+(((12*A*B+6*c^2)*m*k^2+15*l*a2-(15/2)*(nu-(1/2)*n-1)*(nu-(1/2)*n+1))*a4+(15/2)*a3^2*l)*H^2+((8*A*c*k^2*m+5*a1*l)*a4+a1*B^2*k^2*m+5*a3*(l*a2-(1/2)*(nu-(1/2)*n-1)*(nu-(1/2)*n+1)))*H+(A^2*k^2*m+a0*l)*a4+(3*B^2*a0+2*B*a1*c)*m*k^2+(a1*a3+(1/2)*a2^2)*l-(1/2)*(nu-(1/2)*n-1)*a2*(nu-(1/2)*n+1))*(diff(G(xi), xi))^4-32*G(xi)^10*(-(3/4)*H*k^2*m*(-2*H^4*a4-H^3*a3+H*a1+2*a0)*G(xi)^2+7*H^5*a4^2*l+(35/4)*((2/35)*c*B*m*k^2+a3*l)*a4*H^4+((m*(2*A*B+c^2)*k^2+5*l*a2-(5/2)*(nu-(1/2)*n-1)*(nu-(1/2)*n+1))*a4+(5/2)*a3^2*l)*H^3+(((5/2)*a1*l+3*c*A*m*k^2)*a4+(5/2)*a3*(l*a2-(1/2)*(nu-(1/2)*n-1)*(nu-(1/2)*n+1)))*H^2+((A^2*k^2*m+a0*l)*a4+(1/2)*k^2*m*B*a1*c+(a1*a3+(1/2)*a2^2)*l-(1/2)*(nu-(1/2)*n-1)*a2*(nu-(1/2)*n+1))*H+(1/2)*((B*A+(1/2)*c^2)*a1+3*B*a0*c)*m*k^2+((1/4)*a0*a3+(1/4)*a1*a2)*l-(1/8)*(nu-(1/2)*n-1)*a1*(nu-(1/2)*n+1))*(diff(G(xi), xi))^3-48*((7/3)*H^6*a4^2*l+(7/2)*H^5*a3*a4*l+(((1/3)*m*(B*A+(1/2)*c^2)*k^2+(5/2)*l*a2-(5/4)*(nu-(1/2)*n-1)*(nu-(1/2)*n+1))*a4+(5/4)*a3^2*l)*H^4+(((5/3)*a1*l+(4/3)*c*A*m*k^2)*a4+(5/3)*a3*(l*a2-(1/2)*(nu-(1/2)*n-1)*(nu-(1/2)*n+1)))*H^3+((A^2*k^2*m+a0*l)*a4+(a1*a3+(1/2)*a2^2)*l-(1/2)*(nu-(1/2)*n-1)*a2*(nu-(1/2)*n+1))*H^2+((1/3)*(B*A+(1/2)*c^2)*a1*m*k^2+((1/2)*a0*a3+(1/2)*a1*a2)*l-(1/4)*(nu-(1/2)*n-1)*a1*(nu-(1/2)*n+1))*H+(1/3)*m*(A*a1*c+3*(B*A+(1/2)*c^2)*a0)*k^2+((1/6)*a0*a2+(1/12)*a1^2)*l-(1/12)*(nu-(1/2)*n-1)*a0*(nu-(1/2)*n+1))*G(xi)^12*(diff(G(xi), xi))^2-8*(4*a4^2*H^7*l+7*a3*a4*H^6*l+((6*l*a2+3*nu*n-3*nu^2-(3/4)*n^2+3)*a4+3*a3^2*l)*H^5+((2*A*c*k^2*m+5*a1*l)*a4+5*a3*(l*a2-(1/2)*(nu-(1/2)*n-1)*(nu-(1/2)*n+1)))*H^4+((4*A^2*k^2*m+4*a0*l)*a4+(4*a1*a3+2*a2^2)*l-2*(nu-(1/2)*n-1)*a2*(nu-(1/2)*n+1))*H^3+((3*a0*a3+3*a1*a2)*l-(3/2)*(nu-(1/2)*n-1)*a1*(nu-(1/2)*n+1))*H^2+(2*k^2*m*A*a1*c+(2*a0*a2+a1^2)*l-(nu-(1/2)*n-1)*a0*(nu-(1/2)*n+1))*H+A*m*(A*a1+6*a0*c)*k^2+a1*l*a0)*G(xi)^14*(diff(G(xi), xi))-8*G(xi)^16*((1/2)*H^8*a4^2*l+H^7*a3*a4*l+((l*a2-(1/2)*(nu-(1/2)*n-1)*(nu-(1/2)*n+1))*a4+(1/2)*a3^2*l)*H^6+(a1*a4*l+a3*(l*a2-(1/2)*(nu-(1/2)*n-1)*(nu-(1/2)*n+1)))*H^5+((A^2*k^2*m+a0*l)*a4+(a1*a3+(1/2)*a2^2)*l-(1/2)*(nu-(1/2)*n-1)*a2*(nu-(1/2)*n+1))*H^4+((a0*a3+a1*a2)*l-(1/2)*(nu-(1/2)*n-1)*a1*(nu-(1/2)*n+1))*H^3+(((1/2)*a1^2+a0*a2)*l-(1/2)*(nu-(1/2)*n-1)*a0*(nu-(1/2)*n+1))*H^2+a1*(A^2*k^2*m+a0*l)*H+(1/2)*a0^2*l+3*k^2*m*A^2*a0)

(4)

Eqs:={seq(EQ[i],i=0..12)}:

 

sol:=solve(Eqs,{a0, a1, a2, a3, a4, H, nu},explicit)

(5)
 

 

Download GGGGGGG2.mw

Hi!

I am studying Burger's equation, and I would like to see the steps that Maple takes to solve this.  "ShowSteps" doesn't seem to work.

Unfortunately, I am unable to share the worksheet I made.

Server Error - MaplePrimes

 
 

MaplePrimes
 
 
 
Connect with Maplesoft:
Questions  |  Posts  |  Tags  |  Users  |  Unanswered  |  Maplesoft Blog  |  Badges  |  Recent
© Maplesoft, a division of Waterloo Maple Inc. .  |  maplesoft.com  |  Terms of Use  |  Privacy  |  Consent Preferences  | Trademarks

 

loading

Error occurred during PDF generation. Please refresh the page and try again

First 24 25 26 27 28 29 30 Last Page 26 of 2425