MaplePrimes Questions

hi,

I would like help with 2 questions regarding complex plots and Euler's formula:

- I'm trying to plot a complex (simple) plot in Maple Flow (2024.2) but got into a problem:

does anyone would know how to fix/solve it?

- how could an complex exponential function be expanded with Euler's formula

Thanks very much in advance.

Where can I found details about Statistics:-Sample(..., method=envelope).

It would be nice to have a link to a description of the envelope method Sample uses.
For instance does it share some features of the Cuba library for numeric integration? Does it use the same envelope method evalf/Int(..., method=_CubaSuave)) uses?

Thanks in advance.

I'm having trouble solving this system of differential equations. I haven't solved systems of differential equations before but i tried defining the system and then using dsolve, but it couldn't solve all the equations.

Hope you can help.

NULL

diff(Q1(t), t) = -k1*Q1(t)

 

diff(Q2(t), t) = k1*Q1+k3/Q2(t)-k2*Q2(t)-k4*Q2(t)

 

diff(Q3(t), t) = k4*Q2

 

diff(Q4(t), t) = k2*Q2-k3/Q2

 

NULL

Download System_Of_Differential_Equations.mw

I'm trying to transform a partial differential equation (PDE) into an ordinary differential equation (ODE) as demonstrated in the paper. However, I find some steps confusing and difficult to follow. The process often feels chaotic, and managing the complexity of the equations is overwhelming. Could you suggest an effective and systematic method to handle such transformations more easily?

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

declare(Omega(x, t)); declare(U(xi))

Omega(x, t)*`will now be displayed as`*Omega

 

U(xi)*`will now be displayed as`*U

(2)

tr := {t = tau, x = tau*c[0]+xi, Omega(x, t) = U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau))}

{t = tau, x = tau*c[0]+xi, Omega(x, t) = U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau))}

(3)

P1 := diff(Omega(x, t)^m, t)

Omega(x, t)^m*m*(diff(Omega(x, t), t))/Omega(x, t)

(4)

L1 := PDEtools:-dchange(tr, P1, [xi, tau, U])

(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^m*m*(-((diff(U(xi), xi))*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau))-I*U(xi)*k*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))*c[0]+I*U(xi)*(-k*c[0]+w+delta*(diff(W(tau), tau))-delta^2)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))/(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))

(5)
 

pde1 := I*(diff(Omega(x, t)^m, t))+alpha*(diff(Omega(x, t)^m, `$`(x, 2)))+I*beta*(diff(abs(Omega(x, t))^(2*n)*Omega(x, t)^m, x))+m*sigma*Omega(x, t)^m*(diff(W(t), t)) = I*gamma*abs(Omega(x, t))^(2*n)*(diff(Omega(x, t)^m, x))+delta*abs(Omega(x, t))^(4*n)*Omega(x, t)^m

I*Omega(x, t)^m*m*(diff(Omega(x, t), t))/Omega(x, t)+alpha*(Omega(x, t)^m*m^2*(diff(Omega(x, t), x))^2/Omega(x, t)^2+Omega(x, t)^m*m*(diff(diff(Omega(x, t), x), x))/Omega(x, t)-Omega(x, t)^m*m*(diff(Omega(x, t), x))^2/Omega(x, t)^2)+I*beta*(2*abs(Omega(x, t))^(2*n)*n*(diff(Omega(x, t), x))*abs(1, Omega(x, t))*Omega(x, t)^m/abs(Omega(x, t))+abs(Omega(x, t))^(2*n)*Omega(x, t)^m*m*(diff(Omega(x, t), x))/Omega(x, t))+m*sigma*Omega(x, t)^m*(diff(W(t), t)) = I*gamma*abs(Omega(x, t))^(2*n)*Omega(x, t)^m*m*(diff(Omega(x, t), x))/Omega(x, t)+delta*abs(Omega(x, t))^(4*n)*Omega(x, t)^m

(6)

NULL

L1 := PDEtools:-dchange(tr, pde1, [xi, tau, U])

I*(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^m*m*(-((diff(U(xi), xi))*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau))-I*U(xi)*k*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))*c[0]+I*U(xi)*(-k*c[0]+w+delta*(diff(W(tau), tau))-delta^2)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))/(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))+alpha*((U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^m*m^2*((diff(U(xi), xi))*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau))-I*U(xi)*k*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^2/(U(xi)^2*(exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^2)+(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^m*m*((diff(diff(U(xi), xi), xi))*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau))-(2*I)*(diff(U(xi), xi))*k*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau))-U(xi)*k^2*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))/(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))-(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^m*m*((diff(U(xi), xi))*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau))-I*U(xi)*k*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^2/(U(xi)^2*(exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^2))+I*beta*(2*(abs(U(xi))*exp(-Im(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^(2*n)*n*((diff(U(xi), xi))*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau))-I*U(xi)*k*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))*abs(1, U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))*(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^m/(abs(U(xi))*exp(-Im(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))+(abs(U(xi))*exp(-Im(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^(2*n)*(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^m*m*((diff(U(xi), xi))*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau))-I*U(xi)*k*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))/(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau))))+m*sigma*(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^m*(diff(W(tau), tau)) = I*gamma*(abs(U(xi))*exp(-Im(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^(2*n)*(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^m*m*((diff(U(xi), xi))*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau))-I*U(xi)*k*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))/(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))+delta*(abs(U(xi))*exp(-Im(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^(4*n)*(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^m

(7)

``

``

(8)

Download transform-pde-to-ode-hard_example.mw

I have expected the opposite. Is exp already optimised that hardware floats do not make sense or does the conversion of the argument to hardware floast eats up all the benefit of using hardware floats?

restart;
CodeTools:-Usage( for i from 1 to 100 by 0.1 do exp(i) end do):
CodeTools:-Usage( for i from 1 to 100 by 0.1 do (evalhf@exp)(i) end do):
memory used=1.54MiB, alloc change=0 bytes, cpu time=16.00ms, real time=15.00ms, gc time=0ns
memory used=5.88MiB, alloc change=32.00MiB, cpu time=31.00ms, real time=33.00ms, gc time=0ns

Is there a way to determine how we can construct a system of equations from this complex PDE? Also, moderator, you mentioned I could create a new question using the branch option, but you deleted my previous question, which led me to delete my earlier post. don't delete this one.

Download PDE-Hard.mw

The output RealDomain:-solve(x**2 + 2*cos(x) = (Pi/3)**2 + 1, [x]) means that there is no real solution, but clearly, both x = -Pi/3 and x = +Pi/3 satisfy the original equation: 

So, why does `solve` lose the real solutions without any warning messages? 
Code: 

restart;
eq := 9*(x^2 + 2*cos(x)) = Pi^2 + 9;
RealDomain:-solve(eq, [x]);
                               []

:-solve({eq, x >= 0}, [x]); # as (lhs - rhs)(eq) is an even function 
                               []


this equation will be solve by changing variable but when  i found the function and substitute the ODE is not zero where  is mistake?

restart

with(PDEtools); _local(gamma)

Warning, A new binding for the name `gamma` has been created. The global instance of this name is still accessible using the :- prefix, :-`gamma`.  See ?protect for details.

 

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

declare(phi(x, t)); declare(psi(x, t)); declare(U(xi))

phi(x, t)*`will now be displayed as`*phi

 

psi(x, t)*`will now be displayed as`*psi

 

U(xi)*`will now be displayed as`*U

(2)

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(3)

ode := (diff(diff(U(xi), xi), xi))*lambda^2+(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*lambda*k^3-6*(diff(diff(U(xi), xi), xi))*k^2*(diff(U(xi), xi))*lambda = 0

(diff(diff(U(xi), xi), xi))*lambda^2+(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*lambda*k^3-6*(diff(diff(U(xi), xi), xi))*k^2*(diff(U(xi), xi))*lambda = 0

(4)

W := diff(U(xi), xi) = T(xi)

diff(U(xi), xi) = T(xi)

(5)

ode1 := lambda^2*T(xi)+lambda*k^3*(diff(diff(T(xi), xi), xi))-3*k^2*lambda*T(xi)^2 = 0

lambda^2*T(xi)+lambda*k^3*(diff(diff(T(xi), xi), xi))-3*k^2*lambda*T(xi)^2 = 0

(6)

K := T(xi) = A[0]+A[1]*(exp(2*xi)-1)/(exp(2*xi)+1)+A[2]*(exp(2*xi)-1)^2/(exp(2*xi)+1)^2+B[1]*(exp(2*xi)+1)/(exp(2*xi)-1)+B[2]*(exp(2*xi)+1)/(exp(2*xi)-1)

T(xi) = A[0]+A[1]*(exp(2*xi)-1)/(exp(2*xi)+1)+A[2]*(exp(2*xi)-1)^2/(exp(2*xi)+1)^2+B[1]*(exp(2*xi)+1)/(exp(2*xi)-1)+B[2]*(exp(2*xi)+1)/(exp(2*xi)-1)

(7)

case1 := [k = (1/2)*A[2], lambda = -(1/2)*A[2]^3, A[0] = -A[2], A[1] = 0, A[2] = A[2], B[1] = -B[2], B[2] = B[2]]

[k = (1/2)*A[2], lambda = -(1/2)*A[2]^3, A[0] = -A[2], A[1] = 0, A[2] = A[2], B[1] = -B[2], B[2] = B[2]]

(8)

F1 := subs(case1, K)

T(xi) = -A[2]+A[2]*(exp(2*xi)-1)^2/(exp(2*xi)+1)^2

(9)

F2 := subs(case1, ode1)

(1/4)*A[2]^6*T(xi)-(1/16)*A[2]^6*(diff(diff(T(xi), xi), xi))+(3/8)*A[2]^5*T(xi)^2 = 0

(10)

odetest(F1, F2)

0

(11)

subs(F1, W)

diff(U(xi), xi) = -A[2]+A[2]*(exp(2*xi)-1)^2/(exp(2*xi)+1)^2

(12)

E := map(int, diff(U(xi), xi) = -A[2]+A[2]*(exp(2*xi)-1)^2/(exp(2*xi)+1)^2, xi)

U(xi) = A[2]*((1/2)*ln(exp(2*xi))+2/(exp(2*xi)+1))-A[2]*xi

(13)

odetest(E, ode)

32*A[2]*exp(8*xi)*lambda*k^3/(exp(2*xi)+1)^5-352*A[2]*exp(6*xi)*lambda*k^3/(exp(2*xi)+1)^5+192*A[2]^2*exp(6*xi)*lambda*k^2/(exp(2*xi)+1)^5+8*A[2]*exp(8*xi)*lambda^2/(exp(2*xi)+1)^5+352*A[2]*exp(4*xi)*lambda*k^3/(exp(2*xi)+1)^5-192*A[2]^2*exp(4*xi)*lambda*k^2/(exp(2*xi)+1)^5+8*A[2]*exp(6*xi)*lambda^2/(exp(2*xi)+1)^5-32*A[2]*exp(2*xi)*lambda*k^3/(exp(2*xi)+1)^5-8*A[2]*exp(4*xi)*lambda^2/(exp(2*xi)+1)^5-8*A[2]*exp(2*xi)*lambda^2/(exp(2*xi)+1)^5

(14)
 

NULL

Download problem.mw

I'm trying to solve system of ODE (Temperature changing with time) which are going to use the heat capacity obtained from thermophysical package (heat capacity is changing with temperature).

In the support page there is an example in which they were able to integrate the heat capacity from the package. So I wondering if it is possible to include it in an ODE system.

I used their same approach, I tried defining the call to the package as a function but I'm getting an error:

"Error, (in dsolve/numeric/process_input) input system must be an ODE system, found {ThermophysicalData:-CoolProp:-PropsSI(C,P,101325,T,T1(t),"hydrogen"), T1(t), T2(t), T3(t)}"

Attached question.mw

restart:
with(ThermophysicalData):
with(CoolProp):
with(plots):

#I would like to get the heat capacity from this package. Heat capacity is a function of temperature and pressure.
CP:=T1->PropsSI(C, P, 101325, T, T1, "hydrogen")/10000:

#Parameters
UA:=10:T0:=20:TS:=250:W:=100:M:=1000:

#The temperature is changing in this system of ODE with time. I would like to have the heat capacity value changing with temperature using the values obtained from the package.
EQ1:=diff(T1(t),t)=(W*CP(T1(t))*(T0-T1(t))+UA*(TS-T1(t)))/M/CP(T1(t)):
EQ2:=diff(T2(t),t)=(W*CP(T1(t))*(T1(t)-T2(t))+UA*(TS-T2(t)))/M/CP(T1(t)):
EQ3:=diff(T3(t),t)=(W*CP(T1(t))*(T2(t)-T3(t))+UA*(TS-T3(t)))/M/CP(T1(t)):

sol:=dsolve({EQ1,EQ2,EQ3,T1(0)=25,T2(0)=25,T3(0)=25},[T1(t),T2(t),T3(t)],numeric):
odeplot(sol,[[t,T1(t)],[t,T2(t)],[t,T3(t)]],t=0..140,legend=[T1,T2,T3],labels = ["time [min]", "Ti [C]"],axes=boxed)
sol(57.7);

Dear Maple user i want to extract the data from the given graph and store in excel file. where the first column contain the value of lambda in that substitude the values of delta2 ranging from 0.002 to 0.1 (atleast 20 values) and second column  contain Nb =0.1, third column Nb= 0.2 and third column Nb=0.3. Thanks in advance

restart:
h:=z->1-(delta2/2)*(1 + cos(2*(Pi/L1)*(z - d1 - L1))):
K1:=((4/h(z)^4)-(sin(alpha)/F)-h(z)^2+Nb*h(z)^4):
lambda:=Int(K1,z=0..1):
L1:=0.2: F:=10:
d1:=0.2:
alpha:=Pi/6:
plot( [seq(eval(lambda, Nb=j), j in [0.1,0.2,0.3])], delta2=0.02..0.1);

Hi,

I would like help on accessing an element of matrix which is itself  an element of another matrix, like:

how could I reference the element "1.0" or "6.0"?

Thanks in advance for any help.

I tried the latest Maple flow upgrade (2024.2) and noticed some strange behavior. When I enter units such as L/min or m/s^2, the program states: "invalid unit(s) Units:-Simple:-*" However, to my surprise, if I start the canvas by stating with(Units) everything works as it should. In the user manual however it is stated that the with() commands do not work within Flow. If someone would be so kind to explain what I am doing wrong.

Hello sir, how are you?
Sorry to bother you, I needed your help. I have the script from your textbook "3D Graph Equation of Motorcycle run on Maple Software". It's not working. I'd appreciate it if you could take a look.

with(plots);
implicitplot3d(((49.80*x + 19.44*y + 133.2300 - 19.08*sqrt(x^2 + 8.30*x + 19.8469 + y^2 + 3.24*y) - 66.6150*abs(-3.9*sqrt((x - 1.7)^2 + (y - 1.35)^2))) + 0.42) + 0.5625*abs(3.9*sqrt((x - 1.7)^2 + (y - 1.35)^2)) + 0.42 + abs(0.00390625*(x^8 + y^8) - 0.5*x + 2*y + 2) = ((((((((((((2 + abs(3.9*sqrt((x - 1.7)^2 + (y - 1.35)^2))) + 0.42) + abs(0.00390625*(x^8 + y^8) - 0.5*x + 2*y + 2)*(x^2 + 8.30) + abs(3.9*sqrt((x - 1.7)^2 + (y - 1.35)^2)) + 0.42 + abs(0.00390625*(x^8 + y^8) - 0.5*x + 2*y + 2)*(y^2 + 3.24)) + abs(3.9*sqrt((x - 1.7)^2 + (y - 1.35)^2))) + 0.42 + abs(0.00390625*(x^8 + y^8) - 0.5*x + 2*y + 2)*(x^2 + 8.30) + abs(3.9*sqrt((x - 1.7)^2 + (y - 1.35)^2))) + 0.42) + abs(0.00390625*(x^8 + y^8) - 0.5*x + 2*y - 2)*(x^2 + 3.24) + abs(3.9*sqrt((x - 1.7)^2 + (y - 1.35)^2)) + 0.42 + abs(0.00390625*(x^8 + y^8) - 0.5*x + 2*y - 2)*(y^2 - 3.18)) + abs(3.9*sqrt((x - 1.7)^2 + (y - 1.35)^2))) + 0.42 + abs(0.00390625*(x^8 + y^8) - 0.5*x + 2*y + 2)*(x^2 + 8.30) - 3.9*sqrt((x - 1.7)^2 + (y - 1.35)^2)) + 0.42) + abs(0.00390625*(x^8 + y^8) - 0.5*x + 2*y - 2)*(x^2 + 8.30) - 3.9*sqrt((x - 1.7)^2 + (y - 1.35)^2) + 0.42 + abs(0.00390625*(x^8 + y^8) - 0.5*x + 2*y - 2)*(x^2 + 3.24)) - 3.9*sqrt((x - 1.7)^2 + (y - 1.35)^2)) + 0.42 + abs(0.00390625*(x^8 + y^8) - 0.5*x + 2*y + 2)*(y^2 + 3.24) + 0.42*abs(0.00390625*(x^8 + y^8) - 0.5*x + 2*y + 2) and ((((((((((((2 + abs(3.9*sqrt((x - 1.7)^2 + (y - 1.35)^2))) + 0.42) + abs(0.00390625*(x^8 + y^8) - 0.5*x + 2*y + 2)*(x^2 + 8.30) + abs(3.9*sqrt((x - 1.7)^2 + (y - 1.35)^2)) + 0.42 + abs(0.00390625*(x^8 + y^8) - 0.5*x + 2*y + 2)*(y^2 + 3.24)) + abs(3.9*sqrt((x - 1.7)^2 + (y - 1.35)^2))) + 0.42 + abs(0.00390625*(x^8 + y^8) - 0.5*x + 2*y + 2)*(x^2 + 8.30) + abs(3.9*sqrt((x - 1.7)^2 + (y - 1.35)^2))) + 0.42) + abs(0.00390625*(x^8 + y^8) - 0.5*x + 2*y - 2)*(x^2 + 3.24) + abs(3.9*sqrt((x - 1.7)^2 + (y - 1.35)^2)) + 0.42 + abs(0.00390625*(x^8 + y^8) - 0.5*x + 2*y - 2)*(y^2 - 3.18)) + abs(3.9*sqrt((x - 1.7)^2 + (y - 1.35)^2))) + 0.42 + abs(0.00390625*(x^8 + y^8) - 0.5*x + 2*y + 2)*(x^2 + 8.30) - 3.9*sqrt((x - 1.7)^2 + (y - 1.35)^2)) + 0.42) + abs(0.00390625*(x^8 + y^8) - 0.5*x + 2*y - 2)*(x^2 + 8.30) - 3.9*sqrt((x - 1.7)^2 + (y - 1.35)^2) + 0.42 + abs(0.00390625*(x^8 + y^8) - 0.5*x + 2*y - 2)*(x^2 + 3.24)) - 3.9*sqrt((x - 1.7)^2 + (y - 1.35)^2)) + 0.42 + abs(0.00390625*(x^8 + y^8) - 0.5*x + 2*y + 2)*(y^2 + 3.24) + 0.42*abs(0.00390625*(x^8 + y^8) - 0.5*x + 2*y + 2) = 0, x = -7 .. 7, y = -4 .. 3, z = -3 .. 3, numpoints = 350000, style = surface, color = "Niagara Azure");

While these things are a walk in the park with languages like C and system administration languages like bash, the maple file IO is really a bit wanting

I tried, but nowhere in the manual could I find how to use a variable in a filename.

As an example with bash,   you can assign a value to a variable say Ver=01.

The program code contains the filename as
filename$Ver.txt,
and upon execution of the file saved, it is saved as filename01.txt .
Where it replaced the variable with its value in the saved file.

There seems to be no such thing in Maple I could find.
If it exists, it must be so obscure that normal manual searches cannot find it.

So, how do you save a file using a variable in the filename, which then uses the value of the variable in the saved filename. ?
This is basically a prerequisite e.g. for server based maple doing large datasets, so maple must be capable doing it.

I have just posted a question about whether it is possible to modify a procedure once the procedure is created.

It disappeared.

I either want to add an option or change the body of the procedure by replacing functions.

The procedure is generated by Maple commands so I cannot do the changes as if I would do it normally when entering by hand.

Is adding an option or changing the body possible?

I can extract the operands by doing op(eval(procname)). But I can neither extract the body nor assemble everything together.

I will delete this message in case the other message reappears.

First 48 49 50 51 52 53 54 Last Page 50 of 2425