MaplePrimes Questions

Dear all;

 

Hello everybody, I need your help to dispaly some values obtained using my function f. When I run the code there is no results obtained. Many thanks.

restart:

# The vectors e(i) satify the folowing conditions
e(0)*e(1)=e(n-1) assuming  1<n;
e(0)*e(0)=e(2):
e(1)*e(1)=e(n-1) assuming  1<n: :
e(2)*e(1)=e(n) assuming  1<n:
#
for i from 1  to n-1 do
e(i)*e(0)=e(i+1);
end do:

# We define the function f
f:=e(0)->e(0)+(n-3)*e(1);
f:=e(1)->(n-2)*e(1);
for i from 2  to 3 do
f:=e(i)->(n+i-3)*e(i)+(i-1)*(n-3)*e(n-3+i);
end do:

for i from 4 to n do
f:=e(i)->(n+i-3)*e(i)
end do:

# We define the two vectors
x:=sum(alpha(k)*e(k),k=0..n);
y:=sum(beta(k)*e(k),k=0..n);

#Question : I would like to compute the following  but there is no display of the solution. 
(x*y);
f(x*y);
f(x);
f(y);
x*f(y);
f(x)*y;
f(x*y)- f(x)*y-x*f(y);

After manually working out answer for problem 4-4 in Mathews & Walker's Mathematical Methods of Physics , I tried to check my solution with maple2015. Briefly the problem involves inputs periodic with period T, being transformed into outputs, through a kernal G.  The net result is that all input frequencies omega periodic in T are multiplied by (omega_0/omega)^2, except for constant frequency which transforms to zero.  The problem asks to evaluate the kernal G.

Maple2015 correctly evaluated the integral for a constant input, a cosine input, and a sine input, but gave undefined when I tried an exponential(i*x) input which is just a linear combination of the two previous inputs.  I found this interesting because the integral is finite, well defined, and only has an absolute function (in the kernal), which may cause Maple problems, as it correctly evaluated integral when I split it into two regions.  Interestingly if instead of working with a period of T, I used 2*pi, and redfined my G function accordingly, Maple evaluated the exp input integral without any problems.  So the problem appears to be with the T variable, but I correctly used assumptions of T>0, and 0<t<T, so I am not sure why it would work correctly when I use T=2*pi, but failed when using a general period T.  Any help would be welcome.

 

 

restart

assume(T > 0)

assume(0 < t and t < T)

about(T)

Originally T, renamed T~:

  Involved in the following expressions with properties
    T-t assumed RealRange(Open(0),infinity)
  is assumed to be: real
  also used in the following assumed objects
  [T-t] assumed RealRange(Open(0),infinity)

 

about(t)

Originally t, renamed t~:

  Involved in the following expressions with properties
    T-t assumed RealRange(Open(0),infinity)
  is assumed to be: RealRange(Open(0),infinity)
  also used in the following assumed objects
  [T-t] assumed RealRange(Open(0),infinity)

 

assume(n::integer, n > 0)

about(n)

Originally n, renamed n~:

  is assumed to be: AndProp(integer,RealRange(1,infinity))

 

G := proc (x) options operator, arrow; (1/2)*omega0^2*T^2*((1/6)*Pi^2-(1/2)*Pi*abs(2*Pi*x/T)+Pi^2*x^2/T^2)/Pi^2 end proc

proc (x) options operator, arrow; (1/2)*omega0^2*T^2*((1/6)*Pi^2-(1/2)*Pi*abs(2*Pi*x/T)+Pi^2*x^2/T^2)/Pi^2 end proc

(1)

(int(G(t-tp), tp = 0 .. T))/T

0

(2)

(int(G(t-tp)*sin(2*Pi*n*tp/T), tp = 0 .. T))/T

(1/2)*T^2*omega0^2*cos(t*Pi*n/T)*sin(t*Pi*n/T)/(Pi^2*n^2)

(3)

(int(G(t-tp)*cos(2*Pi*n*tp/T), tp = 0 .. T))/T

(1/4)*T^2*omega0^2*(2*cos(t*Pi*n/T)^2-1)/(Pi^2*n^2)

(4)

(int(G(t-tp)*exp((I*2)*Pi*n*tp/T), tp = 0 .. T))/T

undefined/T

(5)

(int(G(t-tp)*(cos(2*Pi*n*tp/T)+I*sin(2*Pi*n*tp/T)), tp = 0 .. T))/T

undefined/T

(6)

simplify((int(G(t-tp)*exp((I*2)*Pi*n*tp/T), tp = 0 .. t))/T+(int(G(t-tp)*exp((I*2)*Pi*n*tp/T), tp = t .. T))/T)

(1/4)*omega0^2*exp((2*I)*t*Pi*n/T)*T^2/(Pi^2*n^2)

(7)

assume(0 < t and t < 2*Pi)

G2 := proc (x) options operator, arrow; 2*omega0^2*((1/6)*Pi^2-(1/2)*Pi*abs(x)+(1/4)*x^2) end proc

proc (x) options operator, arrow; 2*omega0^2*((1/6)*Pi^2-(1/2)*Pi*abs(x)+(1/4)*x^2) end proc

(8)

(int(G2(t-tp)*exp(I*n*tp), tp = 0 .. 2*Pi))/(2*Pi)

omega0^2*exp(I*n*t)/n^2

(9)

 

Download MathewsWalkerProblem4-4.mwMathewsWalkerProblem4-4.mw

 

 

I'm trying to insert $(x_0,y_0)$ into a Maple plot (that's how LaTeX would be written). I want to do this with a Maple command rather than creating the plot then hand-tailoring with mouse clicks. This is what I've tried without success:

p1:=plot(sin, -Pi..Pi,-1..1):

t1:=textplot(Pi/2,0.9,something):

display(p1,t1)

For *something* I've tried such as

Typesetting:-typeset(try)

and

typeset(try)

where try is something like (x[0],y[0]) and [(x[0],y[0])] and similar forms.

No joy! Any help appreciated.

I have the following function

where A,B,Ψ, K1,K2,K3,α,β are all constants.

How to find the value of m for which the above expression is 0 or approximate to 0 for different values fo the constants.

e.g., Fixing all the parameters except A, I want to find the values of m for different values of A. How to do that in maple?

 

I hoped that Maple would return the value of 1 in all commands (see below). However, introducing a scaling parameter, sigma, yields the unevaluated expression. Why? I still think it should evaluate to the value of 1.

 

kind regards,

Harry (not a mathematician, but a psychologist)

 

 

 

integral.mw

Can anybody where I can find collection of third party Maple packages?

One site that I know is

http://cpc.cs.qub.ac.uk/

Regards

we have positive number from 1 to 1000. how many time we write number 3?

How to increase the size of toolbar icons in Maple 2015 32-bit Classic on Windows?

Hello everyone! I got some trouble in process a list. Hope you can help:

Assume i got a list like this:

 

{{k = k, l = RootOf(_Z^2+_Z*k+k^2-1), o = -k-RootOf(_Z^2+_Z*k+k^2-1)}, {k = k, l = RootOf(_Z^2+_Z*k+k^2+1), o = -k-RootOf(_Z^2+_Z*k+k^2+1)}, {k = 0, l = 1, o = -1}, {k = 0, l = -1, o = 1}, {k = 1, l = 0, o = -1}, {k = 1, l = -1, o = 0}, {k = -1, l = 0, o = 1}, {k = -1, l = 1, o = 0}, {k = RootOf(_Z^2+1), l = 0, o = -RootOf(_Z^2+1)}, {k = RootOf(_Z^2+1), l = -RootOf(_Z^2+1), o = 0}}

 

Now all i want is remove Complex and RootOf from this list, how can i do that?

Thank for your reading adn your help!

I have the following expression

f=u/(sqrt(u*(u-1)))

and I want to simplify it. Eventhough that I tell Maple that u is real and greater than 1 but it does not simplify the expression. What is wrong? Please see the attached file.

Radical.mw

How I can sketch the helix with parametric equations x=2cost  y=sint  z=t  and the line with parameric equation x=-2t  y=1  z=(pi/2)+t   on a three-dimensional coordinate system?

How I can graph parabolic cylinder y=x^2 and elipsoid x^2+4y^2+4z^2=16 on a three-dimensional coordinate system?

How do you put labels on individual columns in ColumnGraph?

a1:= f(x) :
> T1 :=simplify((taylor(a1,x=alpha,N+3))):
> E1:=subs([seq(((D@@i)(f))(alpha) = 0,i=1..m-1),f(alpha)=0,x=e[n]+alpha],T1):
> g1 :=(convert(simplify(series((E1,e[n]=0,N))),polynom));

 

Hi,

 

I am trying to evaluate an integral and expecting an expression as a result. But the following code does not provide expression.

 

I am geting

 

I need help.

 

Thanks.

 

 

 

First 1177 1178 1179 1180 1181 1182 1183 Last Page 1179 of 2434