MaplePrimes Questions

Looking everywhere for this.  Hard to find.  Trying to shade under the curve of $2=x^{.5}+y^{.5}$ from x=0 to 1.  Here is what I found and tried:

 

A:=implicitplot(x^.5+y^.5=2,x=-1..2,y=-1..2,thickness=3,color=blue):
B:=implicitplot(x^.5+y^.5=2,x=0..1,filled=true,color=yellow,view[0..1,-1..1]):
plots[display](A,B, scaling=constrained);

 

 

no idea what the view does.  Any help would be much appreciated. 

 

Nick


I am trying to setup a Dual Quaternion Multiplication Table. I found the table on Wikki. I  need some help here.

Have set

x1  =1   x2 = i   x3  =j   x4   =k   x5 =e   x6 = ei   x7 = ej   x8 =ek

 

restart

                                                                                                              #    x1   x2    x3   x4    x5   x6    x7   x8

with(DifferentialGeometry):

NULL

 

StructureEquations := [[x1, x1] = x1, [x1, x2] = x2, [x1, x3] = x3, [x1, x4] = x4, [x1, x5] = x1*x5, [x1, x6] = x6, [x1, x7] = x7, [x1, x8] = x8, [x2, x1] = x2, [x2, x2] = -1, [x2, x3] = x4, [x2, x4] = -x3, [x2, x5] = x6, [x2, x6] = -x5, [x2, x7] = x8, [x2, x8] = -x7, [x3, x1] = x3, [x3, x2] = -x4, [x3, x3] = -1, [x3, x4] = x2, [x3, x5] = x7, [x3, x6] = -x8, [x3, x7] = -x5, [x3, x8] = x6, [x4, x1] = x4, [x4, x2] = x3, [x4, x3] = -x2, [x4, x4] = -1, [x4, x5] = x8, [x4, x6] = x7, [x4, x7] = -x6, [x4, x8] = -x5, [x5, x1] = x5, [x5, x2] = x6, [x5, x3] = x7, [x5, x4] = x8, [x5, x5] = 0, [x6, x1] = x6, [x6, x2] = -x5, [x6, x3] = x8, [x6, x4] = -x7, [x7, x1] = x7, [x7, x2] = -x8, [x7, x3] = -x5, [x7, x4] = x6, [x8, x1] = x8, [x8, x2] = x7, [x8, x3] = -x6, [x8, x4] = -x5]

[[x1, x1] = x1, [x1, x2] = x2, [x1, x3] = x3, [x1, x4] = x4, [x1, x5] = x1*x5, [x1, x6] = x6, [x1, x7] = x7, [x1, x8] = x8, [x2, x1] = x2, [x2, x2] = -1, [x2, x3] = x4, [x2, x4] = -x3, [x2, x5] = x6, [x2, x6] = -x5, [x2, x7] = x8, [x2, x8] = -x7, [x3, x1] = x3, [x3, x2] = -x4, [x3, x3] = -1, [x3, x4] = x2, [x3, x5] = x7, [x3, x6] = -x8, [x3, x7] = -x5, [x3, x8] = x6, [x4, x1] = x4, [x4, x2] = x3, [x4, x3] = -x2, [x4, x4] = -1, [x4, x5] = x8, [x4, x6] = x7, [x4, x7] = -x6, [x4, x8] = -x5, [x5, x1] = x5, [x5, x2] = x6, [x5, x3] = x7, [x5, x4] = x8, [x5, x5] = 0, [x6, x1] = x6, [x6, x2] = -x5, [x6, x3] = x8, [x6, x4] = -x7, [x7, x1] = x7, [x7, x2] = -x8, [x7, x3] = -x5, [x7, x4] = x6, [x8, x1] = x8, [x8, x2] = x7, [x8, x3] = -x6, [x8, x4] = -x5]

(1)

``

(2)

DQ := LieAlgebraData(StructureEquations, [x1, x2, x3, x4, x5, x6, x7, x8])

_DG([["LieAlgebra", "L1", [8, table( [ ] )]], [[[1, 2, 2], 1], [[1, 3, 3], 1], [[1, 4, 4], 1], [[1, 5, 1], x5], [[1, 5, 5], x1], [[1, 6, 6], 1], [[1, 7, 7], 1], [[1, 8, 8], 1], [[1, 2, 2], -1], [[2, 3, 4], 1], [[2, 4, 3], -1], [[2, 5, 6], 1], [[2, 6, 5], -1], [[2, 7, 8], 1], [[2, 8, 7], -1], [[1, 3, 3], -1], [[2, 3, 4], 1], [[3, 4, 2], 1], [[3, 5, 7], 1], [[3, 6, 8], -1], [[3, 7, 5], -1], [[3, 8, 6], 1], [[1, 4, 4], -1], [[2, 4, 3], -1], [[3, 4, 2], 1], [[4, 5, 8], 1], [[4, 6, 7], 1], [[4, 7, 6], -1], [[4, 8, 5], -1], [[1, 5, 5], -1], [[2, 5, 6], -1], [[3, 5, 7], -1], [[4, 5, 8], -1], [[1, 6, 6], -1], [[2, 6, 5], 1], [[3, 6, 8], -1], [[4, 6, 7], 1], [[1, 7, 7], -1], [[2, 7, 8], 1], [[3, 7, 5], 1], [[4, 7, 6], -1], [[1, 8, 8], -1], [[2, 8, 7], -1], [[3, 8, 6], 1], [[4, 8, 5], 1]]])

(3)

DGsetup(DQ)

`Lie algebra: L1`

(4)

MultiplicationTable(DQ, "AlgebraTable")

Error, (in DifferentialGeometry:-LieAlgebras:-MultiplicationTable) invalid input: DifferentialGeometry:-ChangeFrame expects its 1st argument, frame_name, to be of type {name, string}, but received _DG([["LieAlgebra", "L1", [8, table( [ ] )]], [[[1, 2, 2], 1], [[1, 3, 3], 1], [[1, 4, 4], 1], [[1, 5, 1], x5], [[1, 5, 5], x1], [[1, 6, 6], 1], [[1, 7, 7], 1], [[1, 8, 8], 1], [[1, 2, 2], -1], [[2, 3, 4], 1], [[2, 4, 3], -1], [[2, 5, 6], 1], [[2, 6, 5], -1], [[2, 7, 8], 1], [[2, 8, 7], -1], [[1, 3, 3], -1], [[2, 3, 4], 1], [[3, 4, 2], 1], [[3, 5, 7], 1], [[3, 6, 8], -1], [[3, 7, 5], -1], [[3, 8, 6], 1], [[1, 4, 4], -1], [[2, 4, 3], -1], [[3, 4, 2]...

 

NULL

 

Download Dual_Quaternion_Defining_Algebra.mw

 

Hello,

I have use a sparsematrixplot to identify the patterns in a matrix.

In order to facilitate the readability of my sparsematrixplot, i would like to change the labels of the rows/ columns axis.

Instead of the numeric graduation, i would like to add :

- for my rows, the labels : [eq1,eq2, ..., ]
- for my columns, the labels : [q1,q2,q3,...,]

Do you have ideas how I can do that ?

Thank you for your help

 

Dear all,

I developed a program to solve f(x, y) = 0 and g(x, y) = 0, I obtained as results (x=2.726, y=2.126) . running the same program another time it gives (x=2.762, y=1.992). how to explain this?

> fsolve({f(x, y) = 0, g(x, y) = 0}, {x = 0 .. infinity, y= 0 .. infinity});

Thanks in advance.

Hello,

In the post :

http://www.mapleprimes.com/questions/209721-Simplification-Of-Trigonometric-Expressions

you have help me to build a procedure so as to simplify trigonometric expressions of the following form, that is to say where each trigonometric expression is in factor with a term :

x0(t)+sin(alpha0(t))*sin(gamma0(t))*sin(beta0(t))*xb[1]-sin(alpha0(t))*sin(beta0(t))*cos(gamma0(t))*zb[1]-sin(alpha0(t))*cos(beta0(t))*yb[1]+cos(alpha0(t))*sin(gamma0(t))*zb[1]+cos(alpha0(t))*cos(gamma0(t))*xb[1]-l2[1]*(sin(psi[1](t))*sin(alpha0(t))*sin(gamma0(t))*sin(beta0(t))-cos(psi[1](t))*sin(alpha0(t))*sin(beta0(t))*cos(gamma0(t))+sin(psi[1](t))*cos(alpha0(t))*cos(gamma0(t))+cos(psi[1](t))*cos(alpha0(t))*sin(gamma0(t)))-l3[1]*(sin(theta[1](t))*sin(psi[1](t))*sin(alpha0(t))*sin(beta0(t))*cos(gamma0(t))+sin(theta[1](t))*cos(psi[1](t))*sin(alpha0(t))*sin(gamma0(t))*sin(beta0(t))+cos(theta[1](t))*sin(psi[1](t))*sin(alpha0(t))*sin(gamma0(t))*sin(beta0(t))-cos(theta[1](t))*cos(psi[1](t))*sin(alpha0(t))*sin(beta0(t))*cos(gamma0(t))-sin(theta[1](t))*sin(psi[1](t))*cos(alpha0(t))*sin(gamma0(t))+sin(theta[1](t))*cos(psi[1](t))*cos(alpha0(t))*cos(gamma0(t))+cos(theta[1](t))*sin(psi[1](t))*cos(alpha0(t))*cos(gamma0(t))+cos(theta[1](t))*cos(psi[1](t))*cos(alpha0(t))*sin(gamma0(t)))-xp[1](t) = 0

From a mechanical point of view, this form of equations comes from the constraint equations obtained with a vectorial closure.

Now I would like to silmplify the constraint equations which come form angular closure.

The equations are in the form :

sin(gamma0(t))*cos(beta0(t)) = -(sin(psi[1](t))*cos(theta[1](t))*cos(gamma[1](t))+sin(psi[1](t))*sin(theta[1](t))*sin(gamma[1](t))-cos(theta[1](t))*cos(psi[1](t))*sin(gamma[1](t))+cos(psi[1](t))*sin(theta[1](t))*cos(gamma[1](t)))*cos(beta[1](t))

i try to treat the right side with the following code :

applyrule([
cos(u::anything)*cos(v::anything)-sin(u::anything)*sin(v::anything)=cos(u+v),
cos(u::anything)*sin (v::anything)+sin(u::anything)*cos(v::anything)=sin(u+v),
sin(u::anything)*sin(v::anything)-cos(u::anything)*cos(v::anything)=-cos(u+v),
-sin(v::anything)*cos(u::anything)-sin(u::anything)*cos(v::anything)=-sin(u+v)], simplify(-(sin(psi[1](t))*cos(theta[1](t))*cos(gamma[1](t))+sin(psi[1](t))*sin(theta[1](t))*sin(gamma[1](t))-cos(theta[1](t))*cos(psi[1](t))*sin(gamma[1](t))+cos(psi[1](t))*sin(theta[1](t))*cos(gamma[1](t)))*cos(beta[1](t)), size))

The result is :

(-sin(theta[1](t)+psi[1](t))*cos(gamma[1](t))+sin(gamma[1](t))*cos(theta[1](t)+psi[1](t)))*cos(beta[1](t))

It seems that the result is not simplified enough. I would like to obtain this expression :

cos(beta[1](t))*sin(gamma[1](t)-theta[1](t)-psi[1](t))

Have you a idea why the simplification is not conducted once more ? Do you have ideas so as to simplify the equation so as to obtain the result mentioned ?

Thanks a lot for your help

 

 

Dear All

How can we collect coefficient wrt certain differential ration in an expression?

See for detail:


with(PDEtools):

u := a[0]+a[1]*(diff(phi(xi), xi))/phi(xi)

a[0]+a[1]*(diff(phi(xi), xi))/phi(xi)

(1)

-k*(diff(u, `$`(xi, 2)))+alpha*(diff(u, `$`(xi, 3)))

-k*(a[1]*(diff(diff(diff(phi(xi), xi), xi), xi))/phi(xi)-3*a[1]*(diff(diff(phi(xi), xi), xi))*(diff(phi(xi), xi))/phi(xi)^2+2*a[1]*(diff(phi(xi), xi))^3/phi(xi)^3)+alpha*(a[1]*(diff(diff(diff(diff(phi(xi), xi), xi), xi), xi))/phi(xi)-4*a[1]*(diff(diff(diff(phi(xi), xi), xi), xi))*(diff(phi(xi), xi))/phi(xi)^2+12*a[1]*(diff(diff(phi(xi), xi), xi))*(diff(phi(xi), xi))^2/phi(xi)^3-3*a[1]*(diff(diff(phi(xi), xi), xi))^2/phi(xi)^2-6*a[1]*(diff(phi(xi), xi))^4/phi(xi)^4)

(2)

expand(dsubs(diff(phi(xi), `$`(xi, 2)) = -lambda*(diff(phi(xi), xi))-mu*phi(xi), -k*(a[1]*(diff(diff(diff(phi(xi), xi), xi), xi))/phi(xi)-3*a[1]*(diff(diff(phi(xi), xi), xi))*(diff(phi(xi), xi))/phi(xi)^2+2*a[1]*(diff(phi(xi), xi))^3/phi(xi)^3)+alpha*(a[1]*(diff(diff(diff(diff(phi(xi), xi), xi), xi), xi))/phi(xi)-4*a[1]*(diff(diff(diff(phi(xi), xi), xi), xi))*(diff(phi(xi), xi))/phi(xi)^2+12*a[1]*(diff(diff(phi(xi), xi), xi))*(diff(phi(xi), xi))^2/phi(xi)^3-3*a[1]*(diff(diff(phi(xi), xi), xi))^2/phi(xi)^2-6*a[1]*(diff(phi(xi), xi))^4/phi(xi)^4)))

-a[1]*(diff(phi(xi), xi))*alpha*lambda^3/phi(xi)-a[1]*alpha*lambda^2*mu-7*a[1]*(diff(phi(xi), xi))^2*alpha*lambda^2/phi(xi)^2-8*a[1]*(diff(phi(xi), xi))*alpha*lambda*mu/phi(xi)-a[1]*(diff(phi(xi), xi))*k*lambda^2/phi(xi)-2*a[1]*alpha*mu^2-a[1]*k*lambda*mu-12*a[1]*(diff(phi(xi), xi))^3*alpha*lambda/phi(xi)^3-8*a[1]*(diff(phi(xi), xi))^2*alpha*mu/phi(xi)^2-3*a[1]*(diff(phi(xi), xi))^2*k*lambda/phi(xi)^2-2*a[1]*(diff(phi(xi), xi))*k*mu/phi(xi)-6*a[1]*(diff(phi(xi), xi))^4*alpha/phi(xi)^4-2*a[1]*(diff(phi(xi), xi))^3*k/phi(xi)^3

(3)

How ca extract coefficients of fraction (diff(phi(xi), xi))/phi(xi) in (3) ????


Download Coefficients_of_Fractions.mw

Regards

Dear All

In student numerical package, for in case of Secant method, how can we force Maple to print procedure and result of every iteration like we do in calculations by hand??

It gives direct output like:

 

with(Student[NumericalAnalysis]):

f := x^3-7*x^2+14*x-6

x^3-7*x^2+14*x-6

(1)

Secant(f, x = [2.7, 3.2], tolerance = 10^(-2))

3.005775850

(2)

Secant(f, x = [2.7, 3.2], tolerance = 10^(-2), output = sequence)

2.7, 3.2, 3.100884956, 2.858406793, 3.026267866, 3.005775850

(3)

What is we want print actual procedure that carry out calculations in step (3) ?

*What if, **want to

Download Secant_Method.mw

Regards

So have to calculate frequency response of RLC-circuit
Long story short - I can't get how to solve something like this
solve(abs(I+x) = 1)
Obv - the answer is 0 or -I, but i get 1-I, -1-I instead

In a post of April 15, 2013 by Kitonum, the procedure named Picture accepts a list of polygon segments, creates a plot of these as a 2D polygon's boundaries and fills the polygon with a color.

The code below attempts to modify Picture to produce a 3D filled polygon in a plane parallel to the xy plane.

When invoked by the code below the procedure, the filling color conforms to the straight line boundaries but overflows the curved, parabolic boundary. How can this be corrected?

Picture:=proc(L, C, N::posint:=100, Boundary::list:=[linestyle=1])

 local i, var, var1, var2,e, e1, e2,e3, P, h ;

 global Q,Border;

 for i to nops(L) do    

#` set P`[i] = list of points for each segment.    

#` for a segment defined as a list of points, P[i] = the segment's definition`

#` for a curve definition, approximate it with a list of [x,y] points of its function evaluated at N even intervals in its

# range`  

  if type(L[i],listlist(algebraic))  then P[i]:=op(L[i]);   else  

  #` for curve def'n, set var = def'n and h= `(variable range)/(2)

  var:=lhs(L[i,2]);  var1:=lhs(rhs(L[i,2]));  var2:= rhs(rhs(L[i,2])); h:=(var2-var1)/(N);

  #` for function def'n, set e=function`

 if type(L[i,1], algebraic) then  e:=L[i,1];

  #` for polar function r=f(t) create N values of the [cos*r,sin*r] i.e. the equivalent [x,y] values for r valued at N even

  # divisions of its range`  

 if nops(L[i])=3 then P[i]:=seq(subs(var=var1+h*i,[e*cos(var), e*sin(var)]), i=0..N);  else

    #` for non-polar function y=f(x) create N values of [x,y] for x values at N even divisions of its range`  

 P[i]:=seq([var1+h*i, subs(var=var1+h*i,e)], i=0..N)  fi;  else

 #` for parametric function [f`(t),g(t)] create N values of [f(t),g(t)] for t values at N even divisions of its range.

     e1:=L[i,1,1];  e2:=L[i,1,2];

#` P`[i]:=seq(subs(var=var1+i*h,[e1, e2]), i=0..N):

 P[i]:=seq([subs(var=var1+i*h,e1), subs(var=var1+i*h,e2),0], i=0..N) fi; fi; od;  #`  MODIFIED FOR 3 D `[f(t), g(t), 0] 

  Q:=[seq(P[i], i=1..nops(L))];

 Border:=plottools[curve]([op(Q), Q[1]],  op(Boundary));

     #` the shaded figure is a polygon whose vertices are Q, whose interior color is C`  

 #` return a list of the polygon and its border`

   [plottools[polygon](Q, C),  Border];

 end proc: 

L := [[[0, 0, 0], [0, 1, 0]], [[x, x^2+1, 0], x = 0 .. 2], [[2, 5, 0], [2, 2, 0]], [[x, x, 0], x = 2 .. 0]]:

plots[display](Picture(L, color = yellow), axes = normal, scaling = constrained)

Hello,

I would like to extract from a equation only the list of variables depending of time.

eq:= x0(t)+sin(alpha0(t))*sin(gamma0(t))*sin(beta0(t))*xb[1]-sin(alpha0(t))*sin(beta0(t))*cos(gamma0(t))*zb[1]-sin(alpha0(t))*cos(beta0(t))*yb[1]+cos(alpha0(t))*sin(gamma0(t))*zb[1]+cos(alpha0(t))*cos(gamma0(t))*xb[1]-l2[1]*(sin(psi[1](t))*sin(alpha0(t))*sin(gamma0(t))*sin(beta0(t))-cos(psi[1](t))*sin(alpha0(t))*sin(beta0(t))*cos(gamma0(t))+sin(psi[1](t))*cos(alpha0(t))*cos(gamma0(t))+cos(psi[1](t))*cos(alpha0(t))*sin(gamma0(t)))-l3[1]*(sin(theta[1](t))*sin(psi[1](t))*sin(alpha0(t))*sin(beta0(t))*cos(gamma0(t))+sin(theta[1](t))*cos(psi[1](t))*sin(alpha0(t))*sin(gamma0(t))*sin(beta0(t))+cos(theta[1](t))*sin(psi[1](t))*sin(alpha0(t))*sin(gamma0(t))*sin(beta0(t))-cos(theta[1](t))*cos(psi[1](t))*sin(alpha0(t))*sin(beta0(t))*cos(gamma0(t))-sin(theta[1](t))*sin(psi[1](t))*cos(alpha0(t))*sin(gamma0(t))+sin(theta[1](t))*cos(psi[1](t))*cos(alpha0(t))*cos(gamma0(t))+cos(theta[1](t))*sin(psi[1](t))*cos(alpha0(t))*cos(gamma0(t))+cos(theta[1](t))*cos(psi[1](t))*cos(alpha0(t))*sin(gamma0(t)))-xp[1](t) = 0;

I think the indets function should help be.

indets(lhs(eq)-rhs(eq), function(t))

The last argument of the indets is wrong but should enable to explain my need.

Thanks a lot for your help

Hello,

I have this list :
T:=[alpha(t),beta(t)]

I would like to create this list automatically:

Tmod:=[alpha_,beta_]

In other words, how can I remove the 3 characters "(t)" and replace it by "_"

Do you have ideas to do so ?

Thanks a lot for your help

I tried to solve a system of two equations using fsolve in Maple, however Maple didn't return any result (yet there is the result of that equation's system):

Maple is returning the command if there are no roots but that isn't my case.

How can I obtain the result in Maple?

worksheet.mw

solution of system of differential equations

is {a(t) = 1, b(t) = exp(t), c(t) = 0}

1 = exp(t), since t = 0, is characteristic equation = (y-0)?
0 = exp(t), how to find this characteristic equation when division is zero?
exp(t) = exp(t), is characteristic equation = (y-t)?

after solved, 

diff(a(t), t) = diff(a(t), t)

diff(b(t), t) = 0

diff(c(t), t) = -b(t)/c(t)

 

there is a diff(a(t), t) term 

how to plot this kind of system?

can diff(a(t), t) be ignore so that only consider two equations, diff(b(t),t) and diff(c(t),t) ?

if so, i use below to plot, it can not show the arrow clearing , i can only see arrow near origin, but not far point

with(plots):
fieldplot([0, y/x], x = -2 .. 2, y = -2 .. 2);
fieldplot([0, y/x], x = -2 .. 2, y = -2 .. 2, arrows = SLIM,grid = [1, 1]);
fieldplot([0, y/x], x = -10 .. 10, y = -10 .. 10);

 about how to calculate vector field of system of 3 differential equations which in terms of a(t), b(t), c(t) , diff(a(t),t), diff(b(t),t), diff(c(t),t)?

is the only method is the express diff(a(t),t), diff(b(t),t), diff(c(t),t) in terms of a(t), b(t), c(t) ?

for example 

<diff(a(t),t), diff(b(t),t), diff(c(t),t)>

if result is

diff(a(t),t) = a(t)*b(t)

diff(b(t),t) =b(t)*c(t)

diff(c(t),t) =c(t)*a(t)

<a(t)*b(t), b(t)*c(t), c(t)*a(t)>

then

is it the vector field <a*b, b*c, c*a> ?

 

First 1161 1162 1163 1164 1165 1166 1167 Last Page 1163 of 2434