MaplePrimes Questions


I wish to delete the rows that have imaginery components from my results Matrix. Have tried many variants of for loops etc.

restart

``

``

interface(displayprecision = 3)

3

(1)

(2)

``

interface(rtablesize = 81)

10

(3)

``

``

Ans := Matrix(17, 15, {(1, 1) = `-`, (1, 2) = u0, (1, 3) = u1, (1, 4) = u2, (1, 5) = u3, (1, 6) = P*x, (1, 7) = Py, (1, 8) = Pz, (1, 9) = g0, (1, 10) = g1, (1, 11) = g2, (1, 12) = g3, (1, 13) = u^2, (1, 14) = g^2, (1, 15) = P, (2, 1) = 1, (2, 2) = -.516501806300516366332207827845271720295699875, (2, 3) = .157087667438024041386330713987768482051008262*I, (2, 4) = .113781789011852812312696505223578179747798329*I, (2, 5) = -.877979905726868500805204485093148911811362591, (2, 6) = -45.5583959992909648360043286735679679113587631, (2, 7) = -49.2104104577498887775211368820566392860712299, (2, 8) = -893.5067837*I, (2, 9) = -.866146675707479268632063873487527071333386044, (2, 10) = 0.392015486681650570173437868256055772345022977e-1*I, (2, 11) = -.1411657646*I, (2, 12) = .520820958366521078324036803446408915170112964, (2, 13) = .999999999999999999999999999999999999997268842, (2, 14) = .999999999999999999999999999999999999974976375, (2, 15) = 890.986610791943203054869284606448158021303178*I, (3, 1) = 0, (3, 2) = -.516501806300516366332207827845271720295699875, (3, 3) = -.1570876674*I, (3, 4) = -.1137817890*I, (3, 5) = -.877979905726868500805204485093148911811362591, (3, 6) = 0, (3, 7) = 0, (3, 8) = 0, (3, 9) = 0, (3, 10) = 0, (3, 11) = 0, (3, 12) = 0, (3, 13) = 0, (3, 14) = 0, (3, 15) = 0, (4, 1) = 2, (4, 2) = 1.37465842397864539997343521056744950913464373, (4, 3) = -.4720070715*I, (4, 4) = 1.04887251334709968989772260444378754238846281*I, (4, 5) = -.658208509656740520048240372814155977066034431, (4, 6) = -139.935858043713569770172241394940432701557933, (4, 7) = 1009.16689416507143999697715965318783801532828, (4, 8) = 35.050637050173061427545252165933711014164793*I, (4, 9) = -1.081758215*I, (4, 10) = -.805172606177376737844957657938233921696306905, (4, 11) = 1.28822588438750284892199202326992770781607054, (4, 12) = .370982506039653923963789326359229665746676298*I, (4, 13) = 1.00000000000000000000000000000000000000004448, (4, 14) = 1.00000000000000000000000000000000000002308483, (4, 15) = 1018.21968036744599747318369866423941656487034, (5, 1) = 0, (5, 2) = 1.37465842397864539997343521056744950913464373, (5, 3) = .472007071498869469711464480852290076392886818*I, (5, 4) = -1.048872513*I, (5, 5) = -.658208509656740520048240372814155977066034431, (5, 6) = 0, (5, 7) = 0, (5, 8) = 0, (5, 9) = 0, (5, 10) = 0, (5, 11) = 0, (5, 12) = 0, (5, 13) = 0, (5, 14) = 0, (5, 15) = 0, (6, 1) = 3, (6, 2) = .888607277416217966051928947403779522572804242, (6, 3) = -.106822611437208274601612056689973427508887756, (6, 4) = .227628951666705815052303897780904267397418654, (6, 5) = -.383602784885339918445575993340862111408067307, (6, 6) = -33.2619224164850716022540679651061384838837392, (6, 7) = -70.5221377558306752001316338827006032187340768, (6, 8) = 520.235208378859672763343647578296600919428272, (6, 9) = .403127155352863813666160452061241985268802920, (6, 10) = -.229875128453580499649930605383626391667210087, (6, 11) = -.249025243344440313757976839460134436215711022, (6, 12) = .850077849442508503270095108095866473994329709, (6, 13) = .999999999999999999999999999999999999999999990, (6, 14) = 1.00000000000000000000000000000000000000001494, (6, 15) = 526.046005054204528169704406776278260629227147, (7, 1) = 0, (7, 2) = .888607277416217966051928947403779522572804242, (7, 3) = .106822611437208274601612056689973427508887756, (7, 4) = -.227628951666705815052303897780904267397418654, (7, 5) = -.383602784885339918445575993340862111408067307, (7, 6) = 0, (7, 7) = 0, (7, 8) = 0, (7, 9) = 0, (7, 10) = 0, (7, 11) = 0, (7, 12) = 0, (7, 13) = 0, (7, 14) = 0, (7, 15) = 0, (8, 1) = 4, (8, 2) = .771395089635626888037058585282289072153672569, (8, 3) = -.251315638632409886572894533969222074089643996, (8, 4) = .494467079738422222368894560870844350373447897, (8, 5) = -.311917252680552965184041884461266972741091408, (8, 6) = -35.3773974809076144493333628813387306219066392, (8, 7) = -261.955262605587133808935304231369552994540307, (8, 8) = 267.817639506339708440220037786669249266668237, (8, 9) = .542590138401669145144489319765760630956089296, (8, 10) = -.207306657051038538831939399741694104211987188, (8, 11) = -.745192226522038608473536679495983480516139685, (8, 12) = .327579665398674149197429570862493923635921752, (8, 13) = 1.00000000000000000000000000000000000000000004, (8, 14) = 1.00000000000000000000000000000000000000000070, (8, 15) = 376.295638946336949362327994692547262453058894, (9, 1) = 0, (9, 2) = .771395089635626888037058585282289072153672569, (9, 3) = .251315638632409886572894533969222074089643996, (9, 4) = -.494467079738422222368894560870844350373447897, (9, 5) = -.311917252680552965184041884461266972741091408, (9, 6) = 0, (9, 7) = 0, (9, 8) = 0, (9, 9) = 0, (9, 10) = 0, (9, 11) = 0, (9, 12) = 0, (9, 13) = 0, (9, 14) = 0, (9, 15) = 0, (10, 1) = 5, (10, 2) = -.771395089635626888037058585282289072153672569, (10, 3) = -.251315638632409886572894533969222074089643996, (10, 4) = .494467079738422222368894560870844350373447897, (10, 5) = .311917252680552965184041884461266972741091408, (10, 6) = -35.3773974809076144493333628813387306219066392, (10, 7) = -261.955262605587133808935304231369552994540307, (10, 8) = -267.817639506339708440220037786669249266668237, (10, 9) = .542590138401669145144489319765760630956089296, (10, 10) = .207306657051038538831939399741694104211987188, (10, 11) = .745192226522038608473536679495983480516139685, (10, 12) = .327579665398674149197429570862493923635921752, (10, 13) = 1.00000000000000000000000000000000000000000004, (10, 14) = 1.00000000000000000000000000000000000000000070, (10, 15) = 376.295638946336949362327994692547262453058894, (11, 1) = 0, (11, 2) = -.771395089635626888037058585282289072153672569, (11, 3) = .251315638632409886572894533969222074089643996, (11, 4) = -.494467079738422222368894560870844350373447897, (11, 5) = .311917252680552965184041884461266972741091408, (11, 6) = 0, (11, 7) = 0, (11, 8) = 0, (11, 9) = 0, (11, 10) = 0, (11, 11) = 0, (11, 12) = 0, (11, 13) = 0, (11, 14) = 0, (11, 15) = 0, (12, 1) = 6, (12, 2) = -.888607277416217966051928947403779522572804242, (12, 3) = -.106822611437208274601612056689973427508887756, (12, 4) = .227628951666705815052303897780904267397418654, (12, 5) = .383602784885339918445575993340862111408067307, (12, 6) = -33.2619224164850716022540679651061384838837392, (12, 7) = -70.5221377558306752001316338827006032187340768, (12, 8) = -520.235208378859672763343647578296600919428272, (12, 9) = .403127155352863813666160452061241985268802920, (12, 10) = .229875128453580499649930605383626391667210087, (12, 11) = .249025243344440313757976839460134436215711022, (12, 12) = .850077849442508503270095108095866473994329709, (12, 13) = .999999999999999999999999999999999999999999990, (12, 14) = 1.00000000000000000000000000000000000000001494, (12, 15) = 526.046005054204528169704406776278260629227147, (13, 1) = 0, (13, 2) = -.888607277416217966051928947403779522572804242, (13, 3) = .106822611437208274601612056689973427508887756, (13, 4) = -.227628951666705815052303897780904267397418654, (13, 5) = .383602784885339918445575993340862111408067307, (13, 6) = 0, (13, 7) = 0, (13, 8) = 0, (13, 9) = 0, (13, 10) = 0, (13, 11) = 0, (13, 12) = 0, (13, 13) = 0, (13, 14) = 0, (13, 15) = 0, (14, 1) = 7, (14, 2) = -1.37465842397864539997343521056744950913464373, (14, 3) = -.4720070715*I, (14, 4) = 1.04887251334709968989772260444378754238846281*I, (14, 5) = .658208509656740520048240372814155977066034431, (14, 6) = -139.935858043713569770172241394940432701557933, (14, 7) = 1009.16689416507143999697715965318783801532828, (14, 8) = -35.05063705*I, (14, 9) = -1.081758215*I, (14, 10) = .805172606177376737844957657938233921696306905, (14, 11) = -1.28822588438750284892199202326992770781607054, (14, 12) = .370982506039653923963789326359229665746676298*I, (14, 13) = 1.00000000000000000000000000000000000000004448, (14, 14) = 1.00000000000000000000000000000000000002308483, (14, 15) = 1018.21968036744599747318369866423941656487034, (15, 1) = 0, (15, 2) = -1.37465842397864539997343521056744950913464373, (15, 3) = .472007071498869469711464480852290076392886818*I, (15, 4) = -1.048872513*I, (15, 5) = .658208509656740520048240372814155977066034431, (15, 6) = 0, (15, 7) = 0, (15, 8) = 0, (15, 9) = 0, (15, 10) = 0, (15, 11) = 0, (15, 12) = 0, (15, 13) = 0, (15, 14) = 0, (15, 15) = 0, (16, 1) = 8, (16, 2) = .516501806300516366332207827845271720295699875, (16, 3) = .157087667438024041386330713987768482051008262*I, (16, 4) = .113781789011852812312696505223578179747798329*I, (16, 5) = .877979905726868500805204485093148911811362591, (16, 6) = -45.5583959992909648360043286735679679113587631, (16, 7) = -49.2104104577498887775211368820566392860712299, (16, 8) = 893.506783720169698656724304667952267191687315*I, (16, 9) = -.866146675707479268632063873487527071333386044, (16, 10) = -0.3920154867e-1*I, (16, 11) = .141165764599481508540163197537118257205129796*I, (16, 12) = .520820958366521078324036803446408915170112964, (16, 13) = .999999999999999999999999999999999999997268842, (16, 14) = .999999999999999999999999999999999999974976375, (16, 15) = 890.986610791943203054869284606448158021303178*I, (17, 1) = 0, (17, 2) = .516501806300516366332207827845271720295699875, (17, 3) = -.1570876674*I, (17, 4) = -.1137817890*I, (17, 5) = .877979905726868500805204485093148911811362591, (17, 6) = 0, (17, 7) = 0, (17, 8) = 0, (17, 9) = 0, (17, 10) = 0, (17, 11) = 0, (17, 12) = 0, (17, 13) = 0, (17, 14) = 0, (17, 15) = 0})

Ans := Matrix(17, 15, {(1, 1) = `-`, (1, 2) = u0, (1, 3) = u1, (1, 4) = u2, (1, 5) = u3, (1, 6) = P*x, (1, 7) = Py, (1, 8) = Pz, (1, 9) = g0, (1, 10) = g1, (1, 11) = g2, (1, 12) = g3, (1, 13) = u^2, (1, 14) = g^2, (1, 15) = P, (2, 1) = 1, (2, 2) = -.516501806300516366332207827845271720295699875, (2, 3) = .157087667438024041386330713987768482051008262*I, (2, 4) = .113781789011852812312696505223578179747798329*I, (2, 5) = -.877979905726868500805204485093148911811362591, (2, 6) = -45.5583959992909648360043286735679679113587631, (2, 7) = -49.2104104577498887775211368820566392860712299, (2, 8) = -893.5067837*I, (2, 9) = -.866146675707479268632063873487527071333386044, (2, 10) = 0.392015486681650570173437868256055772345022977e-1*I, (2, 11) = -.1411657646*I, (2, 12) = .520820958366521078324036803446408915170112964, (2, 13) = .999999999999999999999999999999999999997268842, (2, 14) = .999999999999999999999999999999999999974976375, (2, 15) = 890.986610791943203054869284606448158021303178*I, (3, 1) = 0, (3, 2) = -.516501806300516366332207827845271720295699875, (3, 3) = -.1570876674*I, (3, 4) = -.1137817890*I, (3, 5) = -.877979905726868500805204485093148911811362591, (3, 6) = 0, (3, 7) = 0, (3, 8) = 0, (3, 9) = 0, (3, 10) = 0, (3, 11) = 0, (3, 12) = 0, (3, 13) = 0, (3, 14) = 0, (3, 15) = 0, (4, 1) = 2, (4, 2) = 1.37465842397864539997343521056744950913464373, (4, 3) = -.4720070715*I, (4, 4) = 1.04887251334709968989772260444378754238846281*I, (4, 5) = -.658208509656740520048240372814155977066034431, (4, 6) = -139.935858043713569770172241394940432701557933, (4, 7) = 1009.16689416507143999697715965318783801532828, (4, 8) = 35.050637050173061427545252165933711014164793*I, (4, 9) = -1.081758215*I, (4, 10) = -.805172606177376737844957657938233921696306905, (4, 11) = 1.28822588438750284892199202326992770781607054, (4, 12) = .370982506039653923963789326359229665746676298*I, (4, 13) = 1.00000000000000000000000000000000000000004448, (4, 14) = 1.00000000000000000000000000000000000002308483, (4, 15) = 1018.21968036744599747318369866423941656487034, (5, 1) = 0, (5, 2) = 1.37465842397864539997343521056744950913464373, (5, 3) = .472007071498869469711464480852290076392886818*I, (5, 4) = -1.048872513*I, (5, 5) = -.658208509656740520048240372814155977066034431, (5, 6) = 0, (5, 7) = 0, (5, 8) = 0, (5, 9) = 0, (5, 10) = 0, (5, 11) = 0, (5, 12) = 0, (5, 13) = 0, (5, 14) = 0, (5, 15) = 0, (6, 1) = 3, (6, 2) = .888607277416217966051928947403779522572804242, (6, 3) = -.106822611437208274601612056689973427508887756, (6, 4) = .227628951666705815052303897780904267397418654, (6, 5) = -.383602784885339918445575993340862111408067307, (6, 6) = -33.2619224164850716022540679651061384838837392, (6, 7) = -70.5221377558306752001316338827006032187340768, (6, 8) = 520.235208378859672763343647578296600919428272, (6, 9) = .403127155352863813666160452061241985268802920, (6, 10) = -.229875128453580499649930605383626391667210087, (6, 11) = -.249025243344440313757976839460134436215711022, (6, 12) = .850077849442508503270095108095866473994329709, (6, 13) = .999999999999999999999999999999999999999999990, (6, 14) = 1.00000000000000000000000000000000000000001494, (6, 15) = 526.046005054204528169704406776278260629227147, (7, 1) = 0, (7, 2) = .888607277416217966051928947403779522572804242, (7, 3) = .106822611437208274601612056689973427508887756, (7, 4) = -.227628951666705815052303897780904267397418654, (7, 5) = -.383602784885339918445575993340862111408067307, (7, 6) = 0, (7, 7) = 0, (7, 8) = 0, (7, 9) = 0, (7, 10) = 0, (7, 11) = 0, (7, 12) = 0, (7, 13) = 0, (7, 14) = 0, (7, 15) = 0, (8, 1) = 4, (8, 2) = .771395089635626888037058585282289072153672569, (8, 3) = -.251315638632409886572894533969222074089643996, (8, 4) = .494467079738422222368894560870844350373447897, (8, 5) = -.311917252680552965184041884461266972741091408, (8, 6) = -35.3773974809076144493333628813387306219066392, (8, 7) = -261.955262605587133808935304231369552994540307, (8, 8) = 267.817639506339708440220037786669249266668237, (8, 9) = .542590138401669145144489319765760630956089296, (8, 10) = -.207306657051038538831939399741694104211987188, (8, 11) = -.745192226522038608473536679495983480516139685, (8, 12) = .327579665398674149197429570862493923635921752, (8, 13) = 1.00000000000000000000000000000000000000000004, (8, 14) = 1.00000000000000000000000000000000000000000070, (8, 15) = 376.295638946336949362327994692547262453058894, (9, 1) = 0, (9, 2) = .771395089635626888037058585282289072153672569, (9, 3) = .251315638632409886572894533969222074089643996, (9, 4) = -.494467079738422222368894560870844350373447897, (9, 5) = -.311917252680552965184041884461266972741091408, (9, 6) = 0, (9, 7) = 0, (9, 8) = 0, (9, 9) = 0, (9, 10) = 0, (9, 11) = 0, (9, 12) = 0, (9, 13) = 0, (9, 14) = 0, (9, 15) = 0, (10, 1) = 5, (10, 2) = -.771395089635626888037058585282289072153672569, (10, 3) = -.251315638632409886572894533969222074089643996, (10, 4) = .494467079738422222368894560870844350373447897, (10, 5) = .311917252680552965184041884461266972741091408, (10, 6) = -35.3773974809076144493333628813387306219066392, (10, 7) = -261.955262605587133808935304231369552994540307, (10, 8) = -267.817639506339708440220037786669249266668237, (10, 9) = .542590138401669145144489319765760630956089296, (10, 10) = .207306657051038538831939399741694104211987188, (10, 11) = .745192226522038608473536679495983480516139685, (10, 12) = .327579665398674149197429570862493923635921752, (10, 13) = 1.00000000000000000000000000000000000000000004, (10, 14) = 1.00000000000000000000000000000000000000000070, (10, 15) = 376.295638946336949362327994692547262453058894, (11, 1) = 0, (11, 2) = -.771395089635626888037058585282289072153672569, (11, 3) = .251315638632409886572894533969222074089643996, (11, 4) = -.494467079738422222368894560870844350373447897, (11, 5) = .311917252680552965184041884461266972741091408, (11, 6) = 0, (11, 7) = 0, (11, 8) = 0, (11, 9) = 0, (11, 10) = 0, (11, 11) = 0, (11, 12) = 0, (11, 13) = 0, (11, 14) = 0, (11, 15) = 0, (12, 1) = 6, (12, 2) = -.888607277416217966051928947403779522572804242, (12, 3) = -.106822611437208274601612056689973427508887756, (12, 4) = .227628951666705815052303897780904267397418654, (12, 5) = .383602784885339918445575993340862111408067307, (12, 6) = -33.2619224164850716022540679651061384838837392, (12, 7) = -70.5221377558306752001316338827006032187340768, (12, 8) = -520.235208378859672763343647578296600919428272, (12, 9) = .403127155352863813666160452061241985268802920, (12, 10) = .229875128453580499649930605383626391667210087, (12, 11) = .249025243344440313757976839460134436215711022, (12, 12) = .850077849442508503270095108095866473994329709, (12, 13) = .999999999999999999999999999999999999999999990, (12, 14) = 1.00000000000000000000000000000000000000001494, (12, 15) = 526.046005054204528169704406776278260629227147, (13, 1) = 0, (13, 2) = -.888607277416217966051928947403779522572804242, (13, 3) = .106822611437208274601612056689973427508887756, (13, 4) = -.227628951666705815052303897780904267397418654, (13, 5) = .383602784885339918445575993340862111408067307, (13, 6) = 0, (13, 7) = 0, (13, 8) = 0, (13, 9) = 0, (13, 10) = 0, (13, 11) = 0, (13, 12) = 0, (13, 13) = 0, (13, 14) = 0, (13, 15) = 0, (14, 1) = 7, (14, 2) = -1.37465842397864539997343521056744950913464373, (14, 3) = -.4720070715*I, (14, 4) = 1.04887251334709968989772260444378754238846281*I, (14, 5) = .658208509656740520048240372814155977066034431, (14, 6) = -139.935858043713569770172241394940432701557933, (14, 7) = 1009.16689416507143999697715965318783801532828, (14, 8) = -35.05063705*I, (14, 9) = -1.081758215*I, (14, 10) = .805172606177376737844957657938233921696306905, (14, 11) = -1.28822588438750284892199202326992770781607054, (14, 12) = .370982506039653923963789326359229665746676298*I, (14, 13) = 1.00000000000000000000000000000000000000004448, (14, 14) = 1.00000000000000000000000000000000000002308483, (14, 15) = 1018.21968036744599747318369866423941656487034, (15, 1) = 0, (15, 2) = -1.37465842397864539997343521056744950913464373, (15, 3) = .472007071498869469711464480852290076392886818*I, (15, 4) = -1.048872513*I, (15, 5) = .658208509656740520048240372814155977066034431, (15, 6) = 0, (15, 7) = 0, (15, 8) = 0, (15, 9) = 0, (15, 10) = 0, (15, 11) = 0, (15, 12) = 0, (15, 13) = 0, (15, 14) = 0, (15, 15) = 0, (16, 1) = 8, (16, 2) = .516501806300516366332207827845271720295699875, (16, 3) = .157087667438024041386330713987768482051008262*I, (16, 4) = .113781789011852812312696505223578179747798329*I, (16, 5) = .877979905726868500805204485093148911811362591, (16, 6) = -45.5583959992909648360043286735679679113587631, (16, 7) = -49.2104104577498887775211368820566392860712299, (16, 8) = 893.506783720169698656724304667952267191687315*I, (16, 9) = -.866146675707479268632063873487527071333386044, (16, 10) = -0.3920154867e-1*I, (16, 11) = .141165764599481508540163197537118257205129796*I, (16, 12) = .520820958366521078324036803446408915170112964, (16, 13) = .999999999999999999999999999999999999997268842, (16, 14) = .999999999999999999999999999999999999974976375, (16, 15) = 890.986610791943203054869284606448158021303178*I, (17, 1) = 0, (17, 2) = .516501806300516366332207827845271720295699875, (17, 3) = -.1570876674*I, (17, 4) = -.1137817890*I, (17, 5) = .877979905726868500805204485093148911811362591, (17, 6) = 0, (17, 7) = 0, (17, 8) = 0, (17, 9) = 0, (17, 10) = 0, (17, 11) = 0, (17, 12) = 0, (17, 13) = 0, (17, 14) = 0, (17, 15) = 0})

(4)

``

(5)

"seq( if 'has'(Ans(n,1..15) ,Im<>0) then DeleteRow (Ans(n) )end if,n=2..17)"

Error, invalid argument sequence

"seq( if 'has'(Ans(n,1..15) ,Im<>0) then DeleteRow (Ans(n) )end if,n=2..17)"

 

Ans

Matrix(17, 15, {(1, 1) = `-`, (1, 2) = u0, (1, 3) = u1, (1, 4) = u2, (1, 5) = u3, (1, 6) = P*x, (1, 7) = Py, (1, 8) = Pz, (1, 9) = g0, (1, 10) = g1, (1, 11) = g2, (1, 12) = g3, (1, 13) = u^2, (1, 14) = g^2, (1, 15) = P, (2, 1) = 1, (2, 2) = -.516501806300516366332207827845271720295699875, (2, 3) = .157087667438024041386330713987768482051008262*I, (2, 4) = .113781789011852812312696505223578179747798329*I, (2, 5) = -.877979905726868500805204485093148911811362591, (2, 6) = -45.5583959992909648360043286735679679113587631, (2, 7) = -49.2104104577498887775211368820566392860712299, (2, 8) = -893.5067837*I, (2, 9) = -.866146675707479268632063873487527071333386044, (2, 10) = 0.392015486681650570173437868256055772345022977e-1*I, (2, 11) = -.1411657646*I, (2, 12) = .520820958366521078324036803446408915170112964, (2, 13) = .999999999999999999999999999999999999997268842, (2, 14) = .999999999999999999999999999999999999974976375, (2, 15) = 890.986610791943203054869284606448158021303178*I, (3, 1) = 0, (3, 2) = -.516501806300516366332207827845271720295699875, (3, 3) = -.1570876674*I, (3, 4) = -.1137817890*I, (3, 5) = -.877979905726868500805204485093148911811362591, (3, 6) = 0, (3, 7) = 0, (3, 8) = 0, (3, 9) = 0, (3, 10) = 0, (3, 11) = 0, (3, 12) = 0, (3, 13) = 0, (3, 14) = 0, (3, 15) = 0, (4, 1) = 2, (4, 2) = 1.37465842397864539997343521056744950913464373, (4, 3) = -.4720070715*I, (4, 4) = 1.04887251334709968989772260444378754238846281*I, (4, 5) = -.658208509656740520048240372814155977066034431, (4, 6) = -139.935858043713569770172241394940432701557933, (4, 7) = 1009.16689416507143999697715965318783801532828, (4, 8) = 35.050637050173061427545252165933711014164793*I, (4, 9) = -1.081758215*I, (4, 10) = -.805172606177376737844957657938233921696306905, (4, 11) = 1.28822588438750284892199202326992770781607054, (4, 12) = .370982506039653923963789326359229665746676298*I, (4, 13) = 1.00000000000000000000000000000000000000004448, (4, 14) = 1.00000000000000000000000000000000000002308483, (4, 15) = 1018.21968036744599747318369866423941656487034, (5, 1) = 0, (5, 2) = 1.37465842397864539997343521056744950913464373, (5, 3) = .472007071498869469711464480852290076392886818*I, (5, 4) = -1.048872513*I, (5, 5) = -.658208509656740520048240372814155977066034431, (5, 6) = 0, (5, 7) = 0, (5, 8) = 0, (5, 9) = 0, (5, 10) = 0, (5, 11) = 0, (5, 12) = 0, (5, 13) = 0, (5, 14) = 0, (5, 15) = 0, (6, 1) = 3, (6, 2) = .888607277416217966051928947403779522572804242, (6, 3) = -.106822611437208274601612056689973427508887756, (6, 4) = .227628951666705815052303897780904267397418654, (6, 5) = -.383602784885339918445575993340862111408067307, (6, 6) = -33.2619224164850716022540679651061384838837392, (6, 7) = -70.5221377558306752001316338827006032187340768, (6, 8) = 520.235208378859672763343647578296600919428272, (6, 9) = .403127155352863813666160452061241985268802920, (6, 10) = -.229875128453580499649930605383626391667210087, (6, 11) = -.249025243344440313757976839460134436215711022, (6, 12) = .850077849442508503270095108095866473994329709, (6, 13) = .999999999999999999999999999999999999999999990, (6, 14) = 1.00000000000000000000000000000000000000001494, (6, 15) = 526.046005054204528169704406776278260629227147, (7, 1) = 0, (7, 2) = .888607277416217966051928947403779522572804242, (7, 3) = .106822611437208274601612056689973427508887756, (7, 4) = -.227628951666705815052303897780904267397418654, (7, 5) = -.383602784885339918445575993340862111408067307, (7, 6) = 0, (7, 7) = 0, (7, 8) = 0, (7, 9) = 0, (7, 10) = 0, (7, 11) = 0, (7, 12) = 0, (7, 13) = 0, (7, 14) = 0, (7, 15) = 0, (8, 1) = 4, (8, 2) = .771395089635626888037058585282289072153672569, (8, 3) = -.251315638632409886572894533969222074089643996, (8, 4) = .494467079738422222368894560870844350373447897, (8, 5) = -.311917252680552965184041884461266972741091408, (8, 6) = -35.3773974809076144493333628813387306219066392, (8, 7) = -261.955262605587133808935304231369552994540307, (8, 8) = 267.817639506339708440220037786669249266668237, (8, 9) = .542590138401669145144489319765760630956089296, (8, 10) = -.207306657051038538831939399741694104211987188, (8, 11) = -.745192226522038608473536679495983480516139685, (8, 12) = .327579665398674149197429570862493923635921752, (8, 13) = 1.00000000000000000000000000000000000000000004, (8, 14) = 1.00000000000000000000000000000000000000000070, (8, 15) = 376.295638946336949362327994692547262453058894, (9, 1) = 0, (9, 2) = .771395089635626888037058585282289072153672569, (9, 3) = .251315638632409886572894533969222074089643996, (9, 4) = -.494467079738422222368894560870844350373447897, (9, 5) = -.311917252680552965184041884461266972741091408, (9, 6) = 0, (9, 7) = 0, (9, 8) = 0, (9, 9) = 0, (9, 10) = 0, (9, 11) = 0, (9, 12) = 0, (9, 13) = 0, (9, 14) = 0, (9, 15) = 0, (10, 1) = 5, (10, 2) = -.771395089635626888037058585282289072153672569, (10, 3) = -.251315638632409886572894533969222074089643996, (10, 4) = .494467079738422222368894560870844350373447897, (10, 5) = .311917252680552965184041884461266972741091408, (10, 6) = -35.3773974809076144493333628813387306219066392, (10, 7) = -261.955262605587133808935304231369552994540307, (10, 8) = -267.817639506339708440220037786669249266668237, (10, 9) = .542590138401669145144489319765760630956089296, (10, 10) = .207306657051038538831939399741694104211987188, (10, 11) = .745192226522038608473536679495983480516139685, (10, 12) = .327579665398674149197429570862493923635921752, (10, 13) = 1.00000000000000000000000000000000000000000004, (10, 14) = 1.00000000000000000000000000000000000000000070, (10, 15) = 376.295638946336949362327994692547262453058894, (11, 1) = 0, (11, 2) = -.771395089635626888037058585282289072153672569, (11, 3) = .251315638632409886572894533969222074089643996, (11, 4) = -.494467079738422222368894560870844350373447897, (11, 5) = .311917252680552965184041884461266972741091408, (11, 6) = 0, (11, 7) = 0, (11, 8) = 0, (11, 9) = 0, (11, 10) = 0, (11, 11) = 0, (11, 12) = 0, (11, 13) = 0, (11, 14) = 0, (11, 15) = 0, (12, 1) = 6, (12, 2) = -.888607277416217966051928947403779522572804242, (12, 3) = -.106822611437208274601612056689973427508887756, (12, 4) = .227628951666705815052303897780904267397418654, (12, 5) = .383602784885339918445575993340862111408067307, (12, 6) = -33.2619224164850716022540679651061384838837392, (12, 7) = -70.5221377558306752001316338827006032187340768, (12, 8) = -520.235208378859672763343647578296600919428272, (12, 9) = .403127155352863813666160452061241985268802920, (12, 10) = .229875128453580499649930605383626391667210087, (12, 11) = .249025243344440313757976839460134436215711022, (12, 12) = .850077849442508503270095108095866473994329709, (12, 13) = .999999999999999999999999999999999999999999990, (12, 14) = 1.00000000000000000000000000000000000000001494, (12, 15) = 526.046005054204528169704406776278260629227147, (13, 1) = 0, (13, 2) = -.888607277416217966051928947403779522572804242, (13, 3) = .106822611437208274601612056689973427508887756, (13, 4) = -.227628951666705815052303897780904267397418654, (13, 5) = .383602784885339918445575993340862111408067307, (13, 6) = 0, (13, 7) = 0, (13, 8) = 0, (13, 9) = 0, (13, 10) = 0, (13, 11) = 0, (13, 12) = 0, (13, 13) = 0, (13, 14) = 0, (13, 15) = 0, (14, 1) = 7, (14, 2) = -1.37465842397864539997343521056744950913464373, (14, 3) = -.4720070715*I, (14, 4) = 1.04887251334709968989772260444378754238846281*I, (14, 5) = .658208509656740520048240372814155977066034431, (14, 6) = -139.935858043713569770172241394940432701557933, (14, 7) = 1009.16689416507143999697715965318783801532828, (14, 8) = -35.05063705*I, (14, 9) = -1.081758215*I, (14, 10) = .805172606177376737844957657938233921696306905, (14, 11) = -1.28822588438750284892199202326992770781607054, (14, 12) = .370982506039653923963789326359229665746676298*I, (14, 13) = 1.00000000000000000000000000000000000000004448, (14, 14) = 1.00000000000000000000000000000000000002308483, (14, 15) = 1018.21968036744599747318369866423941656487034, (15, 1) = 0, (15, 2) = -1.37465842397864539997343521056744950913464373, (15, 3) = .472007071498869469711464480852290076392886818*I, (15, 4) = -1.048872513*I, (15, 5) = .658208509656740520048240372814155977066034431, (15, 6) = 0, (15, 7) = 0, (15, 8) = 0, (15, 9) = 0, (15, 10) = 0, (15, 11) = 0, (15, 12) = 0, (15, 13) = 0, (15, 14) = 0, (15, 15) = 0, (16, 1) = 8, (16, 2) = .516501806300516366332207827845271720295699875, (16, 3) = .157087667438024041386330713987768482051008262*I, (16, 4) = .113781789011852812312696505223578179747798329*I, (16, 5) = .877979905726868500805204485093148911811362591, (16, 6) = -45.5583959992909648360043286735679679113587631, (16, 7) = -49.2104104577498887775211368820566392860712299, (16, 8) = 893.506783720169698656724304667952267191687315*I, (16, 9) = -.866146675707479268632063873487527071333386044, (16, 10) = -0.3920154867e-1*I, (16, 11) = .141165764599481508540163197537118257205129796*I, (16, 12) = .520820958366521078324036803446408915170112964, (16, 13) = .999999999999999999999999999999999999997268842, (16, 14) = .999999999999999999999999999999999999974976375, (16, 15) = 890.986610791943203054869284606448158021303178*I, (17, 1) = 0, (17, 2) = .516501806300516366332207827845271720295699875, (17, 3) = -.1570876674*I, (17, 4) = -.1137817890*I, (17, 5) = .877979905726868500805204485093148911811362591, (17, 6) = 0, (17, 7) = 0, (17, 8) = 0, (17, 9) = 0, (17, 10) = 0, (17, 11) = 0, (17, 12) = 0, (17, 13) = 0, (17, 14) = 0, (17, 15) = 0})

(6)

``

``

 

Download matrix_imaginery_elements.mw

I have the following command.

with(StringTools);
message := `Kajian ini mempunyai tiga objektif pertama seperti yang ditunjukkan dalam bahagian 1.11. Objektif tersebut harus`;

m := convert(message, bytes);

block := map(convert, m, binary);
block := map2(nprintf, "%08d", block);
block := map(proc (t) options operator, arrow; [seq(parse(convert(t, string)[i]), i = 1 .. length(convert(t, string)))] end proc, block);

block := [[0, 1, 0, 0, 1, 0, 1, 1], [0, 1, 1, 0, 0, 0, 0, 1], [0, 1, 1, 0, 1, 0, 1, 0], [0, 1, 1, 0, 1, 0, 0, 1], ........]

with(Bits);
for i to l do
for j from 3 to 7 do
block[i][j] := 1-block[i][j];  //used to flip bit in between 3rd to 7th bit in a block
end do;
c_block[i] := block[i];
end do;
c_block1 := [seq(c_block[i], i = 1 .. l)];

Error, assigning to a long list, please use Arrays

May i know how to solve this problem? I need to change some bit in a list but receive error when there is more than 100 elements in a list. Thank you.

I have a Document that I have been putting together.  When I insert a Subsection into a section below the title I get a 1D-math input command symbol.  Is there a way to prevent this from happening?  I have not had this problem before. 

It appears there is something confused in the startup of the document because when I start a new document and this doesn't happen.

It's almost like when I insert the subsection it converts that part to a worksheet?????

i'm using maple in a research but i want to add a recursive function h_m(t) in 2 case : if m is integer positive and not, 
la formule est donnée comme suit :  if (mod(m,1) = 0  and m>0) then  h:=proc(m,t)  local  t ;  h[0,t]:=t ;   for  i from -4 to  m  by  2 do  h [m,t]:= h[0, t]-(GAMMA(i/(2)))/(2*GAMMA((i+1)/(2)))*cos(Pi*t)*sin(Pi*t)  od:  fi:  end; 
  if (mod(m,1) = 0  and m>0) then  h:=proc(m,t)  local  t ;  h[0,t]:=t ;   for  i from -4 to  m  by  2 do  h [m,t]:= h[0, t]-(GAMMA(i/(2)))/(2*GAMMA((i+1)/(2)))*cos(Pi*t)*sin(Pi*t)  od:  fi:  end;
and i wanna to know how to programmate a Gaus Hypegeometric function. Thank You

 

Dear all,

I am trying to solve the following system of equations by using dsolve, but I get the error:  error, (in RootOf) expression independent of, _Z, could you please help me to solve it. Thank you.

restart;
Digits := 20;
with(plots);
Nr := .1; Nb := .3; Nt := .1; Rb := 0; Lb := 1; Le := 10; Pe := 1; ss := .2; aa := .1; bb := .2; cc := .3; nn := 1.5;
Eq1 := nn.(diff(f(eta), eta))^(nn-1).(diff(f(eta), `$`(eta, 2)))-(nn+1)/(2.*nn+1).eta.(diff(theta(eta), eta)-Nr.(diff(h(eta), eta))-Rb.(diff(g(eta), eta))) = 0;
Eq2 := diff(theta(eta), `$`(eta, 2))+nn/(2.*nn+1).f(eta).(diff(theta(eta), eta))+Nb.(diff(theta(eta), eta)).(diff(h(eta), eta))+Nt.((diff(theta(eta), eta))^2) = 0;
Eq3 := diff(h(eta), `$`(eta, 2))+nn/(2.*nn+1).Le.f(eta).(diff(h(eta), eta))+Nt/Nb.(diff(theta(eta), `$`(eta, 2))) = 0;
Eq4 := diff(g(eta), `$`(eta, 2))+nn/(2.*nn+1).Lb.f(eta).(diff(g(eta), eta))-Pe.((diff(g(eta), eta)).(diff(h(eta), eta))+(diff(h(eta), `$`(eta, 2))).g(eta)) = 0;
etainf := 10;
bcs := f(0) = ss/Le.(D(h))(0), theta(0) = lambda+aa.(D(theta))(0), h(0) = lambda+bb.(D(h))(0), g(0) = lambda+cc.(D(g))(0), (D(f))(etainf) = 0, theta(etainf) = 0, h(etainf) = 0, g(etainf) = 0;
dsys := {Eq1, Eq2, Eq3, Eq4, bcs};
dsol := dsolve(dsys, numeric, continuation = lambda, output = procedurelist);
Error, (in RootOf) expression independent of, _Z

hi

how i can solve nonlinear differential equations with shooting method in maple?ω in equation is unknown...

thanks

eq.mw

dsys3 := {-0.326905829596411e-2*g(x)-(diff(g(x), x, x))-(diff(s(x), x))*(diff(s(x), x, x))-(4/3)*omega^2*g(x), -s(x)*omega^2-(-0.573628192993074e-1*sin(0.571756792348295e-1*x)-0.163452914798206e-2*cos(0.571756792348295e-1*x))*(diff(s(x), x))-(1.00327307112014*cos(0.571756792348295e-1*x)-0.285878396174148e-1*sin(0.571756792348295e-1*x)-1)*(diff(s(x), x, x))+0.220893539279189e-4*(diff(s(x), x, x, x, x))-(9/8)*(diff(s(x), x, x))*(diff(s(x), x))^2-(3/4)*(diff(s(x), x, x))*(diff(g(x), x))-(3/4)*(diff(s(x), x))*(diff(g(x), x, x)), (D(g))(1)+(1/2)*(D(s))(1)^2 = 0, g(0) = 0, s(0) = 0, (D(s))(0) = 0, ((D@@2)(s))(1) = 0, ((D@@3)(s))(1) = 0}

{-0.326905829596411e-2*g(x)-(diff(diff(g(x), x), x))-(diff(s(x), x))*(diff(diff(s(x), x), x))-(4/3)*omega^2*g(x), -s(x)*omega^2-(-0.573628192993074e-1*sin(0.571756792348295e-1*x)-0.163452914798206e-2*cos(0.571756792348295e-1*x))*(diff(s(x), x))-(1.00327307112014*cos(0.571756792348295e-1*x)-0.285878396174148e-1*sin(0.571756792348295e-1*x)-1)*(diff(diff(s(x), x), x))+0.220893539279189e-4*(diff(diff(diff(diff(s(x), x), x), x), x))-(9/8)*(diff(diff(s(x), x), x))*(diff(s(x), x))^2-(3/4)*(diff(diff(s(x), x), x))*(diff(g(x), x))-(3/4)*(diff(s(x), x))*(diff(diff(g(x), x), x)), (D(g))(1)+(1/2)*(D(s))(1)^2 = 0, g(0) = 0, s(0) = 0, (D(s))(0) = 0, ((D@@2)(s))(1) = 0, ((D@@3)(s))(1) = 0}

(1)

``

 

Download eq.mw

Hi

We know determinant of a square matrix A[ij] (i,j ∈ {1,2,3}) is equal to the following expression

det(A) = 1/6 * e[ijk] * e[pqr] * A[ip] * A[jq] * A[kr] 

in which e[ijk] is a third order Tensor (Permutation notation or Levi-Civita symbol) and has a simple form as follows:

e[mnr] = 1/2 * (m-n) * (n-r) * (r-m).

The (i,j) minor of A, denoted Mij, is the determinant of the (n − 1)×(n − 1) matrix that results from deleting row i and column j of A. The cofactor matrix of A is the n×n matrix C whose (i, j) entry is the (i, j) cofactor of A,

C[ij]= -1 i+j * M[ij]

A-1=CT/det(A)

The general form of Levi-Civita symbol is as bellow:

 

I want to write a program for finding inverse of (NxN) matrix:

N=2 →

restart;
N := 2:
with(LinearAlgebra):
f := (1/2)*(sum(sum(sum(sum((m-n)*(p-q)*A[m, p]*A[n, q], q = 1 .. 2), p = 1 .. 2), n = 1 .. 2), m = 1 .. 2)):
A := Matrix(N, N, proc (i, j) options operator, arrow; evalf((37*i^2+j^3)/(2*i+4*j)) end proc):
f/Determinant(A);

N=3 →

restart;
N := 3:
with(LinearAlgebra):
f := (1/24)*(sum(sum(sum(sum(sum(sum((m-n)*(n-r)*(r-m)*(p-q)*(q-z)*(z-p)*A[m, p]*A[n, q]*A[r, z], m = 1 .. N), n = 1 .. N), r = 1 .. N), p = 1 .. N), q = 1 .. N), z = 1 .. N)):
A := Matrix(N, N, proc (i, j) options operator, arrow; 10*i^2/(20*i+j) end proc):
f/Determinant(A);

The results of above programs are equal to 1 and validation of method is observed.

If we can write the general form of determinant then we can find the inverse of any square non-singular matrices.

Now I try to write the mentioned program.

restart;
with(linalg):
N := 7:
Digits := 40:
e := product(product(signum(a[j]-a[i]), j = i+1 .. N), i = 1 .. N):
ML := product(A[a[k], b[k]], k = 1 .. N):
s[0] := e*subs(`$`(a[q] = b[q], q = 1 .. N), e)*ML:
for i to N do
s[i] := sum(sum(s[i-1], a[i] = 1 .. N), b[i] = 1 .. N)
end do:
A := Matrix(N, N, proc (i, j) options operator, arrow; evalf((3*i+j)/(i+2*j)) end proc): # arbitrary matrix
CN:=simplify(s[N]/det(A));

Therefore det(A)= CN-1 * e[a1,a2,..an] * e [b1,b2,.., bn] * A[a1,b1] * A[a2,b2] * ... * A[an,bn].

The correction coefficient is CN(for N)/CN(for N-1) = N!/(N-1)! =N.

restart:
with(linalg): N := 4: Digits := 20:
e := product(product(signum(a[j]-a[i]), j = i+1 .. N), i = 1 .. N):
ML := product(A[a[k], b[k]], k = 1 .. N):
s[0] := e*subs(`$`(a[q] = b[q], q = 1 .. N), e)*ML:
for r to N do s[r] := sum(sum(s[r-1], a[r] = 1 .. N), b[r] = 1 .. N) end do:
A := Matrix(N, N, proc (i, j) options operator, arrow; evalf((3*i+2*j)/(i+2*j)) end proc):
DET:=S[N]:
for x to N do for y to N do
e := product(product(signum(a[j]-a[i]), j = i+1 .. N-1), i = 1 .. N-1):
ML := product(AA[a[k], b[k]], k = 1 .. N-1):
S[0, x, y] := e*subs(`$`(a[q] = b[q], q = 1 .. N-1), e)*ML:
for r to N-1 do S[r, x, y] := sum(sum(S[r-1, x, y], a[r] = 1 .. N-1), b[r] = 1 .. N-1) end do:
f[y, x] := (-1)^(x+y)*subs(seq(seq(AA[t, u] = delrows(delcols(A, y .. y), x .. x)[t, u], t = 1 .. N-1), u = 1 .. N-1), S[N-1, x, y])
end do: end do:
Matrix(N, N, f)/(DET)*(24/6);
A^(-1);

CN for N=4 and N=3 is 24 and 6 respectively i.e. CN(4)/CN(3)=24/6.

When I use bellow procedure the error "(in S) bad index into Matrix" is occurred.

Please help me to write this algorithm by using procedure.

Thank you 

restart; with(linalg): Digits := 40: n := 7:
S := proc (N) local e, ML, s, i:
e := product(product(signum(a[j]-a[i]), j = i+1 .. N), i = 1 .. N):
ML := product(A[a[k], b[k]], k = 1 .. N):
s[0] := e*subs(`$`(a[q] = b[q], q = 1 .. N), e)*ML:
for i to N do s[i] := sum(sum(s[i-1], a[i] = 1 .. N), b[i] = 1 .. N) end do
end proc:
A := Matrix(n, n, proc (i, j) options operator, arrow; evalf((3*i+j)/(i+2*j)) end proc): # arbitrary matrix
CN := simplify(S(n)/det(A))

with(Statistics):
X := RandomVariable(Normal(0, 1))

DensityPlot(X,filled=true)

I don't know why the plot doesn't produce a shaded plot.

 

Hi all,

I seem to be quite stuck on figuring out how to leave certain letters (e.g. planck's constant h) inside the equation without having to assign it as some particular number. 

What I am trying to do is find the value of a when the following equation is at a minimum:

E = (a*(h^2)/2m) + 0.3989422804/sqrt(a)

Here h and m are what I want to set as constants without actually setting them to h := 1 because I want a in terms of h and m. I have already found the derivative dE/da:

((h^2)/2m) - 0.1994711402/a^(3/2)

But I cannot use fsolve to find the value of a at the minimum because it keeps saying that h and m are variables and unsolved for.

Any help would be greatly appreciated.

How to solve following recurrence equation:

 

a(0)=2;

a(n+1)=a(n)+a(n)^2

 

I tried,but it doesn't work.

How to find the sequence an ?

Maple_worsheet.mw

Mariusz Iwaniuk

Below is a custom distribution created based on a function that takes a parameter.

It is possible to create the custom distribution e.g. as D1 and then use it afterwards to find e.g. Mean, but it is not possible to call Mean directly with the creation of the distribution in the call.

Why is that ?

Hi!!

 

I am trying to plot the above curve:

 

restart; with(plots)

> f0 := proc (t) options operator, arrow; t, (-1)*3.9*t*(t-1) end proc; 

> IFS := proc (i, x, y) if i = 1 then return (1/2)*y, (1/2)*x end if; if i = 2 then return (1/2)*x, (1/2)*y+1/2 end if; if i = 3 then return (1/2)*x+1/2, (1/2)*y+1/2 end if; if i = 4 then return -(1/2)*y+1, -(1/2)*x+1/2 end if end proc; 

> g := proc (t) local j; for j to 4 do if evalf((1/4)*j-1/4) <= evalf(t) and evalf(t) <= evalf((1/4)*j) then return IFS(j, f0(4*t-j+1)); break end if end do end proc; 

 

Thus, the instruction  parametricplot(['g'(t),t=0..1]) return the message  

Error, (in plot) incorrect first argument [g(t), t = 0 .. 1]

Some idea or hit to plot this?

 

Thank you for your time

 

This is the coding till i do dhe decryption process. 

Do(plaintext=GetProperty("message",value));
Do(plaintext=convert(GetProperty("message",value),name));
Do(plaintextInt = convert(plaintext, bytes));
Do(plaintextBin = `~`[convert](plaintextInt, binary));
Do(plaintextBin2 = map2(nprintf, "%07d", plaintextBin));
Do(n0 = plaintextBin2[]);
Do(length1 = length(n0));
Do(plaintextCode = cat("", plaintextBin2[]));
Do(length2 = length(plaintextCode));
Do(z = convert(plaintextCode, decimal, binary));
Do(z1 = z+1);
Do(z2 = z1+%sk1);
Do(z3 = convert(z2, base, 2));
Do(b = cat("", z3[]));
Do(z4 = length(b));
Do(z5 = [Bits:-GetBits(-z2, -1 .. 0, bits = z4)]);
Do(z6 = cat("", z5[]));
Do(z7 = convert(z6, decimal, binary));
Do(%C = `mod`(Power(z7, %txte), %txtN));
Do(%C1 = `mod`(Power(%sk1, %txte), %txtN));

Do(%m = `mod`(Power(%C, %d), %N));

Do(%sk2=`mod`(Power(%C1,%d),%N));

Then nw i need to decrypt back to the original message with the coding:

Do(z8 = [Bits:-GetBits(-%m,-1 .. 0, bits = z4)]);
Do(c = cat("", z8[]));
Do(z9 = convert(c, decimal, binary));
Do(z10 = z9-sk2);
Do(z11 = z10-1);
Do(z12 = [Bits:-GetBits(z11, -1 .. 0, bits = length2)]);
Do(d = cat("", z12[]));
Do(plaintextBin2 = [StringTools:-LengthSplit(d, length1)]);
Do(plaintextInt2 = `~`[convert](plaintextBin2, decimal, binary));
Do(%message1 = convert(plaintextInt, bytes));

when i execute the program it shows the error

so how should I solve this as although i think that it should be problem of parsing the number z4 in the sentence that i highlighed, but whenever i correct it it still can't work.Thus anyone who know please help.Thanks.

 

How can I use a matrix in timeseriesanalysis?

 

m3 := Import("d:\\bok6.xlsx")

 

Areachart works fine:

AreaChart([m3], color = "pink" .. "niagara Navy", title = "Tidslinje Tilluft og avtrekk")

 

But when matrix m3 is entered in timeseriesanalysis it gives a error:

ts1 := TimeSeries([m3], startdate = "2016-08-1", header = "Tilluft VAV setpunkt", enddate = "2016-08-01");

Error, (in TimeSeriesAnalysis:-TimeSeries) invalid input: too many and/or wrong type of arguments passed to TimeSeries:-ModuleCopy; first unused argument is [Array(1..4, 1..1, {(1, 1) = 155.0, (2, 1) = 142.0, (3, 1) = 133.0, (4, 1) = 122.0})]

 

 

I have loaded the following packages:

with*matrix  with*linearalgebra  with(plots)  with(Statistics)  with(TimeSeriesAnalysis)

 

Regards

 

Kristian

Maple tech support sent me a third party application for my Maple 2016 to solve a problem that I'm working on. I was instructed to copy and paste a few items from the download: "to your "<maple>/lib" folder" Unfortunately I cannot access "lib" in my Maple "Applications" folder on my OS X MacBook Pro.

This is what Maple Tech Support sent me:

"Another option you may want to look into is the "DirectSearch" package (which is third-party, and not supported by us), which would need to be downloaded from the Maplesoft Application Centre:

 

                http://www.maplesoft.com/applications/view.aspx?SID=101333

 

There is a function "GlobalOptima()", which allows one to search for a global minimum to the objective function, as opposed to a local minimum like commands such as "LSSolve()". To install, you can extract the files "DirectSearch.mla", "DirectSearch.help", and "DirectSearch.hdb" to your "<maple>/lib" folder."

 

Any suggestions?

First 1127 1128 1129 1130 1131 1132 1133 Last Page 1129 of 2434