MaplePrimes Questions


Hello all, first time posting on here so if I make any mistakes please let me know. So I have created a function called "g" and plotted it on a graph. After looking at the two graphs I have plotted (one with discont=false and one with discont=true), I can see 3 discontinuities are present. However, attempting to solve for these discontinuities by setting the denominator of "g" = 0 only returns 1 of the points. I'm not sure why this is happening and how would I go by solving for the other 2 points? Thank you.

f := exp(x-188.5)-4*x^2+1507.964*x-142122.3+cos(x)^2;

exp(x-188.5)-4*x^2+1507.964*x-142122.3+cos(x)^2

(1)

g := (-f+x^2-376.991*x+35530.6)/(f+x^2-376.991*x+35530.6);

(-exp(x-188.5)+5*x^2-1884.955*x+177652.9-cos(x)^2)/(exp(x-188.5)-3*x^2+1130.973*x-106591.7+cos(x)^2)

(2)

``

plot(g, x = 186 .. 194, y = -25 .. 25,discont=false)

 

plot(g, x = 186 .. 194, y = -25 .. 25,discont=true)

 

vasymp := fsolve( denom(g)=0);

192.2026966

(3)

``

Dear all,

My script has multiple animations, in which the range of the variable is larger then I wish to see. Therefore, I have used the view=[x1..x2,y1..y2] command, which has different values for every plot. Plotted seperately, this gives me exactly what I want. However, if I combine the plots using display(A,B,C) they loose their individual views. Instead, maple chooses the view of plot A, and plots B an C in the range defined by view A. 

Is there a way to combine plots and still maintain individual views, within the largest view?

Kind regards,
Bastiaan Overdorp

Am trying to valid a research work done by kuiken(1968)

Kuiken_(1968).pdf

where we have this two eauations:

restart;
Digits := 35;
with(ODETools);
with(student);
with(plots);
inf := 4;
equ1 := diff(f[0](eta), `$`(eta, 3))+theta[0](eta);
equ2 := diff(theta[0](eta), `$`(eta, 2))+3*f[0](eta)*(diff(theta[0](eta), eta));
Bcs1 := f[0](0) = 0, (D(f[0]))(0) = 0, theta[0](0) = 1, theta[0](inf) = 0, (D(D(f[0])))(inf) = 0;
S1 := dsolve({Bcs1, equ1, equ2}, {f[0](eta), theta[0](eta)}, type = numeric, method = bvp[midrich]);
proc(x_bvp)  ...  end;
S1(0);
[                            d                   
[eta = 0., f[0](eta) = 0., ----- f[0](eta) = 0., 
[                           deta                 

    d   /  d            \                                          
  ----- |----- f[0](eta)| = 0.82449782146165697398999365896678734, 
   deta \ deta          /                                          

  theta[0](eta) = 1.0000000000000000000000000000000000, 

    d                                                         ]
  ----- theta[0](eta) = -0.71098574970825563256340736114251047]
   deta                                                       ]
S1(inf);
[                                                            
[eta = 4., f[0](eta) = 1.7815670728545914261072119522795076, 
[                                                            

    d                                                      
  ----- f[0](eta) = 0.51061876174095320088291844433043562, 
   deta                                                    

    d   /  d            \                           
  ----- |----- f[0](eta)| = 0., theta[0](eta) = 0., 
   deta \ deta          /                           

    d                                                             
  ----- theta[0](eta) = -0.000054818176138173095945902421930470836
   deta                                                           

  ]
  ]
  ]
 

 

Pls, I need to find the function of the limit of f[0](eta) at eta tend to infinity. checked equation 45 of the attached document and for the two equation pls checked equation 36 and 37 for the ODE equation solved above.

Kuiken_solution for equation 36 and 37.pdf

Is it possible to animate plot like this parametically:
animate(plot, [[cos(t), sin(t), t = 0 .. A]], A = 0 .. 2*Pi, scaling = constrained, frames = 50)

however given the x and y components as solutions of an implicit equation.

I know I could run RootOf. But it seems that there is a part missing due to a branch cut :-/

What do people find a good screen size is? 

Personally I find two monitors would be ideal for using Maple and especially Maplesim.  I'm going to be adding a second monitor, probably a 20".  Maybe 24" is better?  I think 20" would be enough.  Just wondering how many monitors people out there work with and their monitor sizes.

After changing the time and date on my computer, I get a message saying “Invalid or missing license file.” whenever I try to open Maple. I have tried activating it with my license code. It then gives me a message saying “Activation succesful! Please restart Maple for the new license file to take effect.”. After opening it again, I will once again get the original message. I have also tried reinstalling it twice. One time with the file my school provides, and with a file from Maples website. I get the same error message no matter what I do. 

I haven't been able to access Maple for several weeks now, so I'm getting a bit behind in math class.

How should I go about fixing this?

Hi all,
I have a question about editing strings in Maple2016.
When I make a variable "DataName" which is as below in Maple worksheet,
DataName:=Array(["Data1","Data2","Data3"]):

I want to make the variable "DataSet" whose elements are as below.
DataSet:=[1="Data1",2="Data2",3="Data3"]

Of course I can type the elements of "DataSet", but if the number of DataName increases, it requires a lot of time to do that, so I want to make the "DataSet" by using general command so that I can obtain "DataSet" automatically.
I tried to use the command "cat", "||", "map", and so on... but I could not find how to do that.
Is there anyone who can solve this problem? Please let me know how to solve this problem. I appreciate any idea you may have.

Always thanks for the nice answer

hi..

is correct this answer for differential equations??

i think order of result should be in (10^6 or 10^9 or higher) range....

please check it

thanks

hpp.mw
 

restart

L := 100*10^(-9):

Eq1 := {-(1017/1600000000000000000000000000000000000000000)*(diff(w(x), x, x, x, x, x, x))+(26169/40000000000000000000000000)*(diff(w(x), x, x, x, x))-0.8325000000e-4*omega^2+1.560937500*10^(-21)*omega^2*(diff(w(x), x, x)), w(0) = 0, w(1/10000000) = 0, (D(w))(0) = 0, (D(w))(1/10000000) = 0, ((D@@2)(w))(0) = 0, ((D@@2)(w))(1/10000000) = 0}:

sys := subs(omega^2 = omega2, Eq1);

{-(1017/1600000000000000000000000000000000000000000)*(diff(diff(diff(diff(diff(diff(w(x), x), x), x), x), x), x))+(26169/40000000000000000000000000)*(diff(diff(diff(diff(w(x), x), x), x), x))-0.8325000000e-4*omega2+0.1560937500e-20*omega2*(diff(diff(w(x), x), x)), w(0) = 0, w(1/10000000) = 0, (D(w))(0) = 0, (D(w))(1/10000000) = 0, ((D@@2)(w))(0) = 0, ((D@@2)(w))(1/10000000) = 0}

 

{-(5085/8)*(diff(diff(diff(diff(diff(diff(g1(y), y), y), y), y), y), y))+6542250*(diff(diff(diff(diff(g1(y), y), y), y), y))-0.8325000000e-4*omega2+0.1560937500e-6*omega2*(diff(diff(g1(y), y), y)), 10000000*(D(g1))(0) = 0, 10000000*(D(g1))(1) = 0, 100000000000000*((D@@2)(g1))(0) = 0, 100000000000000*((D@@2)(g1))(1) = 0, g1(0) = 0, g1(1) = 0}

 

{-(5085/8)*(diff(diff(diff(diff(diff(diff(g1(y), y), y), y), y), y), y))+6542250*(diff(diff(diff(diff(g1(y), y), y), y), y))-0.8325000000e-4*omega2+0.1560937500e-6*omega2*(diff(diff(g1(y), y), y))}, {10000000*(D(g1))(0) = 0, 10000000*(D(g1))(1) = 0, 100000000000000*((D@@2)(g1))(0) = 0, 100000000000000*((D@@2)(g1))(1) = 0, g1(0) = 0, g1(1) = 0}

 

{g1(0) = 0, g1(1) = 0, (D(g1))(0) = 0, (D(g1))(1) = 0, ((D@@2)(g1))(0) = 0, ((D@@2)(g1))(1) = 0}

 

{diff(diff(diff(diff(diff(diff(g1(y), y), y), y), y), y), y), diff(diff(diff(diff(diff(g1(y), y), y), y), y), y), diff(diff(diff(diff(g1(y), y), y), y), y), diff(diff(diff(g1(y), y), y), y), diff(diff(g1(y), y), y), diff(g1(y), y)}

 

{-(1017/1600000000000000000000000000000000000000000)*(diff(diff(diff(diff(diff(diff(w(x), x), x), x), x), x), x))+(26169/40000000000000000000000000)*(diff(diff(diff(diff(w(x), x), x), x), x))-0.8325000000e-4*omega2+0.1560937500e-20*omega2*(diff(diff(w(x), x), x))}

 

{-(5085/8)*(diff(diff(diff(diff(diff(diff(g1(y), y), y), y), y), y), y))+6542250*(diff(diff(diff(diff(g1(y), y), y), y), y))-0.8325000000e-4*omega2+0.1560937500e-6*omega2*(diff(diff(g1(y), y), y))}

 

{diff(diff(diff(diff(diff(diff(g1(y), y), y), y), y), y), y) = 10292.62537*(diff(diff(diff(diff(g1(y), y), y), y), y))-0.1309734513e-6*omega2+0.2455752212e-9*omega2*(diff(diff(g1(y), y), y))}

 

{diff(diff(diff(diff(diff(diff(g1(y), y), y), y), y), y), y) = 10292.62537*(diff(diff(diff(diff(g1(y), y), y), y), y))-0.1309734513e13*omega3+2455752212.*omega3*(diff(diff(g1(y), y), y))}

 

{diff(diff(diff(diff(diff(diff(g1(y), y), y), y), y), y), y) = 10292.62537*(diff(diff(diff(diff(g1(y), y), y), y), y))-0.1309734513e13*omega3+2455752212.*omega3*(diff(diff(g1(y), y), y)), g1(0) = 0, g1(1) = 0, (D(g1))(0) = 0, (D(g1))(1) = 0, ((D@@2)(g1))(0) = 0, ((D@@2)(g1))(1) = 0}

 

{((D@@3)(g1))(0), ((D@@3)(g1))(1), ((D@@4)(g1))(0), ((D@@4)(g1))(1), ((D@@5)(g1))(0), ((D@@5)(g1))(1)}

 

((D@@3)(g1))(0)

 

((D@@3)(g1))(1)

 

((D@@4)(g1))(0)

 

((D@@4)(g1))(1)

 

((D@@5)(g1))(0)

 

((D@@5)(g1))(1)

 

((D@@5)(g1))(1), ((D@@4)(g1))(0), ((D@@5)(g1))(0), ((D@@3)(g1))(1), ((D@@4)(g1))(1), ((D@@3)(g1))(0)

 

HFloat(-8.852947665097804e-24), HFloat(-8.991820290300328e-22), HFloat(8.852947665097804e-24), HFloat(-9.672787782157173e-20), HFloat(-8.991820290300328e-22), HFloat(9.672787782157165e-20)

(1)

sqrt(8.85294766509780*10^(-21)*10^19);

.2975390338

(2)

NULL


 

Download hpp.mw

 

Dear all

I have n, p two integers greater than one

I would like to minimize the following real number by a fixed positive constant if its possible

(n/(n+p))^(n/p)-(n/(n+p))^((n+p)/p)

Many thanks

staganation_point11.mw
 

``

restart

l := 1:

1

 

1.5

 

.5

 

[blue, green, red, yellow]

(1)

``

for j to nops(A) do R1 := 2*n/(n+1); R2 := 2*p/(n+1); R3 := 2/(n+1); sol1 := dsolve([diff(diff(diff(f(eta), eta), eta), eta)+f(eta)*(diff(diff(f(eta), eta), eta))+R1*(1-(diff(f(eta), eta))^2)-M*(diff(f(eta), eta)) = 0, diff(diff(theta(eta), eta), eta)+pr*f(eta)*(diff(theta(eta), eta))-R2*pr*(diff(f(eta), eta))*theta(eta)+R3*(A[j]*(diff(f(eta), eta))+B*theta(eta)) = 0, f(0) = 1, (D(f))(0) = L+b*((D@@2)(f))(0), (D(f))(20) = 1, theta(0) = 1+s*(D(theta))(0), theta(20) = 0], numeric, method = bvp); plots[odeplot](sol1, [eta, ((D@@2)(f))(eta)], color = red); fplt[j] := plots[odeplot](sol1, [eta, diff(f(eta), eta)], color = K[j], axes = boxed); tplt[j] := plots[odeplot](sol1, [[eta, theta(eta)]], color = K[j], axes = normal) end do:

 

 

``

l := 1:

1

 

[0, 1, 1.5]

 

.5

 

[blue, green, red, yellow]

(2)

for j to nops(n1) do R4 := 2*n1[j]/(n1[j]+1); R5 := 2*p1/(n1[j]+1); R6 := 2/(n1[j]+1); sol2 := dsolve([diff(diff(diff(f(eta), eta), eta), eta)+f(eta)*(diff(diff(f(eta), eta), eta))+R4*(1-(diff(f(eta), eta))^2)-M1*(diff(f(eta), eta)) = 0, diff(diff(theta(eta), eta), eta)+pr1*f(eta)*(diff(theta(eta), eta))-R5*pr1*(diff(f(eta), eta))*theta(eta)+R6*(A1*(diff(f(eta), eta))+B1*theta(eta)) = 0, f(0) = 1, (D(f))(0) = L1+b1*((D@@2)(f))(0), (D(f))(7) = 1, theta(0) = 1+s1*(D(theta))(0), theta(7) = 0], numeric, method = bvp); plots[odeplot](sol2, [eta, ((D@@2)(f))(eta)], color = red); fplt[j] := plots[odeplot](sol2, sol1, [[eta, diff(f(eta), eta)], [eta, diff(f(eta), eta)]], color = K1[j], axes = boxed); tplt[j] := plots[odeplot](sol2, [[eta, theta(eta)]], color = K1[j], axes = normal) end do; plots:-display([seq(fplt[j], j = 1 .. nops(n1))]); plots:-display([seq(tplt[j], j = 1 .. nops(n1))])

Error, (in plots/odeplot) invalid argument: sol1

 

 

 

``

``

sol1(0);

[eta = 0., f(eta) = 1.00000000000000044, diff(f(eta), eta) = .899599635987511914, diff(diff(f(eta), eta), eta) = -.200800728024976643, theta(eta) = 1.18657688243172332, diff(theta(eta), eta) = .373153764863445037]

(3)

sol1(.1)

[eta = .1, f(eta) = 1.08902313464617162, diff(f(eta), eta) = .881503890693141945, diff(diff(f(eta), eta), eta) = -.162309073227910134, theta(eta) = 1.22040489003745489, diff(theta(eta), eta) = .304232440930656767]

(4)

sol1(.2)

[eta = .2, f(eta) = 1.17641763749368966, diff(f(eta), eta) = .866916683092940898, diff(diff(f(eta), eta), eta) = -.130454301210374102, theta(eta) = 1.24759607023709362, diff(theta(eta), eta) = .240488988787701030]

(5)

sol1(.3)

[eta = .3, f(eta) = 1.19045803452309284, diff(f(eta), eta) = .579367537136023514, diff(diff(f(eta), eta), eta) = -.285675511621370782, theta(eta) = 1.18389221591022696, diff(theta(eta), eta) = .146013974567769960]

(6)

sol1(.4)

[eta = .4, f(eta) = 1.40000000000000034, diff(f(eta), eta) = 1.00000000000000022, diff(diff(f(eta), eta), eta) = -0.243774513041384287e-17, theta(eta) = .625958972186505536, diff(theta(eta), eta) = -.314549395236395634]

(7)

sol1(.5)

[eta = .5, f(eta) = 1.37026161183094430, diff(f(eta), eta) = .874752886901313142, diff(diff(f(eta), eta), eta) = .345911467377074400, theta(eta) = .432494259338694842, diff(theta(eta), eta) = -.382764248064397461]

(8)

sol1(.6)

[eta = .6, f(eta) = 1.36678221814533528, diff(f(eta), eta) = .771028661281065508, diff(diff(f(eta), eta), eta) = .407805382194403932, theta(eta) = .876413930517023876, diff(theta(eta), eta) = -.197648778495384870]

(9)

sol1(2)

[eta = 2., f(eta) = 2.66120522956795602, diff(f(eta), eta) = .991532161353848585, diff(diff(f(eta), eta), eta) = 0.251405465681268682e-1, theta(eta) = .635967939441598018, diff(theta(eta), eta) = -.144641270049362308]

(10)

``

``

``

 

``

``

NULL


 

Download staganation_point11.mw
 

``

restart

l := 1:

1

 

1.5

 

.5

 

[blue, green, red, yellow]

(1)

``

for j to nops(A) do R1 := 2*n/(n+1); R2 := 2*p/(n+1); R3 := 2/(n+1); sol1 := dsolve([diff(diff(diff(f(eta), eta), eta), eta)+f(eta)*(diff(diff(f(eta), eta), eta))+R1*(1-(diff(f(eta), eta))^2)-M*(diff(f(eta), eta)) = 0, diff(diff(theta(eta), eta), eta)+pr*f(eta)*(diff(theta(eta), eta))-R2*pr*(diff(f(eta), eta))*theta(eta)+R3*(A[j]*(diff(f(eta), eta))+B*theta(eta)) = 0, f(0) = 1, (D(f))(0) = L+b*((D@@2)(f))(0), (D(f))(20) = 1, theta(0) = 1+s*(D(theta))(0), theta(20) = 0], numeric, method = bvp); plots[odeplot](sol1, [eta, ((D@@2)(f))(eta)], color = red); fplt[j] := plots[odeplot](sol1, [eta, diff(f(eta), eta)], color = K[j], axes = boxed); tplt[j] := plots[odeplot](sol1, [[eta, theta(eta)]], color = K[j], axes = normal) end do:

 

 

``

l := 1:

1

 

[0, 1, 1.5]

 

.5

 

[blue, green, red, yellow]

(2)

for j to nops(n1) do R4 := 2*n1[j]/(n1[j]+1); R5 := 2*p1/(n1[j]+1); R6 := 2/(n1[j]+1); sol2 := dsolve([diff(diff(diff(f(eta), eta), eta), eta)+f(eta)*(diff(diff(f(eta), eta), eta))+R4*(1-(diff(f(eta), eta))^2)-M1*(diff(f(eta), eta)) = 0, diff(diff(theta(eta), eta), eta)+pr1*f(eta)*(diff(theta(eta), eta))-R5*pr1*(diff(f(eta), eta))*theta(eta)+R6*(A1*(diff(f(eta), eta))+B1*theta(eta)) = 0, f(0) = 1, (D(f))(0) = L1+b1*((D@@2)(f))(0), (D(f))(7) = 1, theta(0) = 1+s1*(D(theta))(0), theta(7) = 0], numeric, method = bvp); plots[odeplot](sol2, [eta, ((D@@2)(f))(eta)], color = red); fplt[j] := plots[odeplot](sol2, sol1, [[eta, diff(f(eta), eta)], [eta, diff(f(eta), eta)]], color = K1[j], axes = boxed); tplt[j] := plots[odeplot](sol2, [[eta, theta(eta)]], color = K1[j], axes = normal) end do; plots:-display([seq(fplt[j], j = 1 .. nops(n1))]); plots:-display([seq(tplt[j], j = 1 .. nops(n1))])

Error, (in plots/odeplot) invalid argument: sol1

 

 

 

``

``

sol1(0);

[eta = 0., f(eta) = 1.00000000000000044, diff(f(eta), eta) = .899599635987511914, diff(diff(f(eta), eta), eta) = -.200800728024976643, theta(eta) = 1.18657688243172332, diff(theta(eta), eta) = .373153764863445037]

(3)

sol1(.1)

[eta = .1, f(eta) = 1.08902313464617162, diff(f(eta), eta) = .881503890693141945, diff(diff(f(eta), eta), eta) = -.162309073227910134, theta(eta) = 1.22040489003745489, diff(theta(eta), eta) = .304232440930656767]

(4)

sol1(.2)

[eta = .2, f(eta) = 1.17641763749368966, diff(f(eta), eta) = .866916683092940898, diff(diff(f(eta), eta), eta) = -.130454301210374102, theta(eta) = 1.24759607023709362, diff(theta(eta), eta) = .240488988787701030]

(5)

sol1(.3)

[eta = .3, f(eta) = 1.19045803452309284, diff(f(eta), eta) = .579367537136023514, diff(diff(f(eta), eta), eta) = -.285675511621370782, theta(eta) = 1.18389221591022696, diff(theta(eta), eta) = .146013974567769960]

(6)

sol1(.4)

[eta = .4, f(eta) = 1.40000000000000034, diff(f(eta), eta) = 1.00000000000000022, diff(diff(f(eta), eta), eta) = -0.243774513041384287e-17, theta(eta) = .625958972186505536, diff(theta(eta), eta) = -.314549395236395634]

(7)

sol1(.5)

[eta = .5, f(eta) = 1.37026161183094430, diff(f(eta), eta) = .874752886901313142, diff(diff(f(eta), eta), eta) = .345911467377074400, theta(eta) = .432494259338694842, diff(theta(eta), eta) = -.382764248064397461]

(8)

sol1(.6)

[eta = .6, f(eta) = 1.36678221814533528, diff(f(eta), eta) = .771028661281065508, diff(diff(f(eta), eta), eta) = .407805382194403932, theta(eta) = .876413930517023876, diff(theta(eta), eta) = -.197648778495384870]

(9)

sol1(2)

[eta = 2., f(eta) = 2.66120522956795602, diff(f(eta), eta) = .991532161353848585, diff(diff(f(eta), eta), eta) = 0.251405465681268682e-1, theta(eta) = .635967939441598018, diff(theta(eta), eta) = -.144641270049362308]

(10)

``

``

``

 

``

``

NULL


 

Download staganation_point11.mw
 

``

restart

l := 1:

1

 

1.5

 

.5

 

[blue, green, red, yellow]

(1)

``

for j to nops(A) do R1 := 2*n/(n+1); R2 := 2*p/(n+1); R3 := 2/(n+1); sol1 := dsolve([diff(diff(diff(f(eta), eta), eta), eta)+f(eta)*(diff(diff(f(eta), eta), eta))+R1*(1-(diff(f(eta), eta))^2)-M*(diff(f(eta), eta)) = 0, diff(diff(theta(eta), eta), eta)+pr*f(eta)*(diff(theta(eta), eta))-R2*pr*(diff(f(eta), eta))*theta(eta)+R3*(A[j]*(diff(f(eta), eta))+B*theta(eta)) = 0, f(0) = 1, (D(f))(0) = L+b*((D@@2)(f))(0), (D(f))(20) = 1, theta(0) = 1+s*(D(theta))(0), theta(20) = 0], numeric, method = bvp); plots[odeplot](sol1, [eta, ((D@@2)(f))(eta)], color = red); fplt[j] := plots[odeplot](sol1, [eta, diff(f(eta), eta)], color = K[j], axes = boxed); tplt[j] := plots[odeplot](sol1, [[eta, theta(eta)]], color = K[j], axes = normal) end do:

 

 

``

l := 1:

1

 

[0, 1, 1.5]

 

.5

 

[blue, green, red, yellow]

(2)

for j to nops(n1) do R4 := 2*n1[j]/(n1[j]+1); R5 := 2*p1/(n1[j]+1); R6 := 2/(n1[j]+1); sol2 := dsolve([diff(diff(diff(f(eta), eta), eta), eta)+f(eta)*(diff(diff(f(eta), eta), eta))+R4*(1-(diff(f(eta), eta))^2)-M1*(diff(f(eta), eta)) = 0, diff(diff(theta(eta), eta), eta)+pr1*f(eta)*(diff(theta(eta), eta))-R5*pr1*(diff(f(eta), eta))*theta(eta)+R6*(A1*(diff(f(eta), eta))+B1*theta(eta)) = 0, f(0) = 1, (D(f))(0) = L1+b1*((D@@2)(f))(0), (D(f))(7) = 1, theta(0) = 1+s1*(D(theta))(0), theta(7) = 0], numeric, method = bvp); plots[odeplot](sol2, [eta, ((D@@2)(f))(eta)], color = red); fplt[j] := plots[odeplot](sol2, sol1, [[eta, diff(f(eta), eta)], [eta, diff(f(eta), eta)]], color = K1[j], axes = boxed); tplt[j] := plots[odeplot](sol2, [[eta, theta(eta)]], color = K1[j], axes = normal) end do; plots:-display([seq(fplt[j], j = 1 .. nops(n1))]); plots:-display([seq(tplt[j], j = 1 .. nops(n1))])

Error, (in plots/odeplot) invalid argument: sol1

 

 

 

``

``

sol1(0);

[eta = 0., f(eta) = 1.00000000000000044, diff(f(eta), eta) = .899599635987511914, diff(diff(f(eta), eta), eta) = -.200800728024976643, theta(eta) = 1.18657688243172332, diff(theta(eta), eta) = .373153764863445037]

(3)

sol1(.1)

[eta = .1, f(eta) = 1.08902313464617162, diff(f(eta), eta) = .881503890693141945, diff(diff(f(eta), eta), eta) = -.162309073227910134, theta(eta) = 1.22040489003745489, diff(theta(eta), eta) = .304232440930656767]

(4)

sol1(.2)

[eta = .2, f(eta) = 1.17641763749368966, diff(f(eta), eta) = .866916683092940898, diff(diff(f(eta), eta), eta) = -.130454301210374102, theta(eta) = 1.24759607023709362, diff(theta(eta), eta) = .240488988787701030]

(5)

sol1(.3)

[eta = .3, f(eta) = 1.19045803452309284, diff(f(eta), eta) = .579367537136023514, diff(diff(f(eta), eta), eta) = -.285675511621370782, theta(eta) = 1.18389221591022696, diff(theta(eta), eta) = .146013974567769960]

(6)

sol1(.4)

[eta = .4, f(eta) = 1.40000000000000034, diff(f(eta), eta) = 1.00000000000000022, diff(diff(f(eta), eta), eta) = -0.243774513041384287e-17, theta(eta) = .625958972186505536, diff(theta(eta), eta) = -.314549395236395634]

(7)

sol1(.5)

[eta = .5, f(eta) = 1.37026161183094430, diff(f(eta), eta) = .874752886901313142, diff(diff(f(eta), eta), eta) = .345911467377074400, theta(eta) = .432494259338694842, diff(theta(eta), eta) = -.382764248064397461]

(8)

sol1(.6)

[eta = .6, f(eta) = 1.36678221814533528, diff(f(eta), eta) = .771028661281065508, diff(diff(f(eta), eta), eta) = .407805382194403932, theta(eta) = .876413930517023876, diff(theta(eta), eta) = -.197648778495384870]

(9)

sol1(2)

[eta = 2., f(eta) = 2.66120522956795602, diff(f(eta), eta) = .991532161353848585, diff(diff(f(eta), eta), eta) = 0.251405465681268682e-1, theta(eta) = .635967939441598018, diff(theta(eta), eta) = -.144641270049362308]

(10)

``

``

``

 

``

``

NULL


 

Download staganation_point11.mw

 

in this program im trying to combine the result, but it showing some error can help me please

 

 

 

How can I sketch the angles such as Pi/6 , Pi/4 or 7Pi/6 and etc by Maple 18? In general, what is maple commend for sketching angles?

Hi

Here is my question: 

I have been trying to plot this on maple but i only get an ampry box

-arctan((2.m.x)/(1-x^2))

Simple as that... M is between 0 to 10

And x and y are supposed to fmbe from 0 to infinity(i dont know what to write for infinity so i give a large number like 2milions)

Am a post graduate student. am using maple as soft ware.. How can I create a 15 x 15 matrix in maple?

I have a data point set:

x_val:=<250,300,350,397,451,497,547,593,647,691,745,788,840,897>:
y_val:=<0,0.5,2,6.3,23.2,48.7,71.2,83.4,90.1,92.8,94.7,95.7,96.9,97.8>:

I want to make a least square fit using this difficult function:
 

function:=x->1-exp(-(k*exp(-(E/(8.314*873.15))*((873.15/x)-1)))*(0.026/350))

but both Statistics[Fit]:
 

with(Statistics):fit_nelog:=Fit(1-exp(-(k*exp(-(E/(8.314*873.15))*((873.15/x)-1)))*(0.026/350)),<x_val|y_val>,x,parameternames=[k,E],output=[parametervector,residualsumofsquares]);

and DirectSearch[DataFit]:

with(DirectSearch):fit_nelog2:=DataFit(1-exp(-(k*exp(-(E/(8.314*873.15))*((873.15/x)-1)))*(0.026/350)),x_val,y_val,x,method=cdos);


give wrong k,E parameters. The correct parameter values were obtained with Excel Solver:

k=27843.3551042397

E=68.4

The approximately correct parameters were fitted when using logarithm form of the function.
How can I obtain correct parameter values in Maple using given form of the function?

int(a(t)*b(t)+2*(diff(a(t), t))*(diff(b(t), t)), a(t));
Error, (in int) integration range or variable must be specified in the second argument, got a(t)
 

do not understand this error message,

how to integrate it?

First 1061 1062 1063 1064 1065 1066 1067 Last Page 1063 of 2434