MaplePrimes Questions

1. This seems wrong:

modp1(ConvertIn((x^2+1)^5, x), 2);
Error, modp1: invalid arguments

ConvertIn works for other unexpanded inputs, and the documentation doesn't say that the polynomial should be expanded.

2. It's not clear what the correct way to test for equality is:

p := modp1(Monomial(1, x), 2):
q := modp1(Multiply(p, One(x)), 2):

is(p=q);
Error, (in property/ConvertRelation) invalid terms in sum: modp1(ConvertIn(x, x), 2)

evalb(p = q);
                              true

There is no Equal function, and IsZero(Subtract(p, q)) is rather clumsy.

3. In the documentation, with "Display Examples with 2D math input" checked, the second input looks like this:

a := (x^4-x^2+2) mod p

which doesn't make any sense.

4. In a 2D Input cell, using a label to refer to a previous output which is zppoly gives an error:

Error, '_Inert_ZPPOLY' is not a valid inert form

The same label in a 1D Input cell works.

5. It's not quite consistent that sometimes one-argument modp1(zppoly) works -- because zppoly stores the modulus -- but sometimes it doesn't:

modp1(IsZero(Subtract(p, q)));
Error, modp1: invalid arguments to function Subtract

6. There is no documentation for modp1/Embed.

 I want to learn about maple software. How to additte any text in maple work sheet? Kindly guide me in such a cases.

 

Regarded Nadeem Abbas (PhD scholar Mathematics PK)

My question is within the worksheet.

assignation.mw

I must be missing something in my Fourier integral.  My understanding is that the sinc function is the transform of a square wave.  In the link below I am getting something slightly different.  I have the parameter tau to define relative to the period, T, to vary the width aspect ratio of the wave,  If tau=T I do get the sinc function.

What am I missing or is what I have correct?

Sq_wave_Fourier_transform.mw

Hi all,

I am stuck in a question. Perhaps somebody can help me. I have to find the values for a, b, c and d such that the expansion of y in powers of x, does not contain the term of x^p for p=3,4,5,6. 

I defined y:

restart:
y:=[(1+a*x+b*x^2)/(1+c*x+d*x^2)]*ln(sinh(x)^2 + cosh(x)^2);

 

But now it became terrible. I tried: series(ln(sinh(x)^2 + cosh(x)^2), x=0, 10). I think I am not right. Can somebody please help me?

  how can I find equation discribing elliptic intersections and use lagrange to show the higest and lowest value ?    g 

I am trying to solve laplaces eqn in maple, and i cannot see an error in my code, however when i run it it returns me nothing. No error, not solution. just nothing.

 

pde := (diff(u(x, y), x, x))+diff(u(x, y), y, y) = 0;

bc[1]:= D[2](u)(x,0) = 0;
bc[2]:= (u)(x,1) = x^2-x;
bc[3]:= (u)(0,y)=0;
bc[4]:= (u)(1,y)=0;

pdsolve({pde, bc[1], bc[2],bc[3],bc[4]}, HINT= X(x)*Y(y));

 

what is going wrong?

Hello!

I am about to draw the rectangle pulse response in Maple. I am new so I am not sure how to start. I did try Google and found some massive functions, and since I am still at the basic level I assume there is something I am missing out on.

What I have:

  1. An interval
  2. A small delta
  3. y(t) = e^-tθ(t) and RC = 1

I did find this: https://www.maplesoft.com/support/help/maple/view.aspx?path=DynamicSystems%2FImpulseResponsePlot

That I got to work for me and the graph is shown. But this TransferFunction is unknown for me. Is there any way to convert my y(t) = e^-tθ(t) into a TransferFunction?

How can i solve this nonlinear equation using adomian decomposition method in maple? 

utt −uxx +u^2 = 6xt(x^2 −t^2)+x^6t^6

 

Hi all,

How can I solve this Integral? 

I do want to learn how could I solve numerically the attached integral. As you can see through the file, there is written one method, however, it is not able to solve the integral.

 
 

Download Integral.mwIntegral.mw
 

Download Integral.mwIntegral.mw

 

 

I'm having this

2+2;
Typesetting:-mn("4"), [4]

everytime I try a calculation. Could someone explain me what is this typesetting thing, and how can it be prevented? I haven't used Maple for a while and I cannot recall having seen it before. Thank you

In Maple 2017 using print in a variable produces the line b:=().  d:="hello" is as it should

In Maple 2016 using the print in a variable produces a blank line where b:=() appears in 2017

In the context of homework, there are some calculations that I do through Maple, and others that I do mostly by hand, and just show my work with Maple's engine that is great at rendering special mathematical formats (like matrices, for example).

I would like to show something like that:

 

It's pretty easy to make the matrices, right now my line looks like this:

 

But I would like to refrain for executing the "+" operator and the multiplication by x6 and x7, to have the output like in the first picture. If I disable all execution and take the statement as plain text, then obviously I will not get the correctly rendered matrices.

Is there a way, like an escape character, to prevent specific operations from being executed in one line in particular?


 

لا شيء

-------------------------------------------------- -------------------------------------------------- -------------------------------------------------- -------------------------

إعادة بدء

مع (LinearAlgebra)

مع (orthopoly)

مع (طالب)

لا شيء

لا شيء

لا شيء

لا شيء

سيل (ألفا): = 2؛  سيل (بيتا): = 1؛  ألفا: = 1.5؛  بيتا: = .5

2

 

1

 

1.5

 

0.5

(1)

n: = 8؛  m: = 8

8

 

8

(2)

 

لا شيء

x [3]: = .611423302089630؛  x [4]: ​​= 1.09446605083631؛  x [5]: = 1.99636816302962؛  x [6]: = 3.38757178455234؛  x [7]: = 5.41873370919121؛  x [8]: = 8.49143699030089

،611423302089630

 

+1.09446605083631

 

1.99636816302962

 

3.38757178455234

 

5.41873370919121

 

8.49143699030089

(3)

# 1 / حساب مصفوفة (A). (طريقة الجمع)

A := array(1 .. n, 1 .. m); for j to m do A[1, j] := evalf(subs(x = 0, L(j-1, 2*x-1))) end do; for j to m do A[2, j] := evalf(subs(x = 0, diff(L(j-1, 2*x-1), x))) end do; for i from 3 to n do for j to m do A[i, j] := evalf(subs(x = x[i], fracdiff(L(j-1, 2*x-1), x, alpha, method = direct))+subs(x = x[i], fracdiff(L(j-1, 2*x-1), x, beta, method = direct))+subs(x = x[i], diff(L(j-1, 2*x-1), x))+subs(x = x[i], L(j-1, 2*x-1))) end do end do

print(`A=`, A)

`A=`, A

(4)

A := convert(A, Matrix)

A := Matrix(8, 8, {(1, 1) = 1., (1, 2) = 2., (1, 3) = 3.500000000, (1, 4) = 5.666666667, (1, 5) = 8.708333333, (1, 6) = 12.88333333, (1, 7) = 18.50972222, (1, 8) = 25.97658730, (2, 1) = 0., (2, 2) = -2., (2, 3) = -6., (2, 4) = -13., (2, 5) = -24.33333333, (2, 6) = -41.75000000, (2, 7) = -67.51666667, (2, 8) = -104.5361111, (3, 1) = 1., (3, 2) = -2.987486314, (3, 3) = -3.301220288, (3, 4) = .5119939327, (3, 5) = 9.171314221, (3, 6) = 23.72035697, (3, 7) = 45.59773916, (3, 8) = 76.72165628, (4, 1) = 1., (4, 2) = -4.549878909, (4, 3) = -1.208865530, (4, 4) = 6.408882482, (4, 5) = 16.03540544, (4, 6) = 27.10075251, (4, 7) = 40.26736031, (4, 8) = 57.11215315, (5, 1) = 1., (5, 2) = -7.181375466, (5, 3) = 6.777193107, (5, 4) = 12.19170970, (5, 5) = 9.600555508, (5, 6) = 7.084730200, (5, 7) = 11.13249218, (5, 8) = 24.60731420, (6, 1) = 1., (6, 2) = -10.92878792, (6, 3) = 28.28352183, (6, 4) = -10.19173665, (6, 5) = -20.04576479, (6, 6) = 9.17677094, (6, 7) = 39.97816692, (6, 8) = 49.07345342, (7, 1) = 1., (7, 2) = -16.09078867, (7, 3) = 78.08969329, (7, 4) = -166.5158779, (7, 5) = 129.0586058, (7, 6) = 104.8307190, (7, 7) = -104.838425, (7, 8) = -111.0119440, (8, 1) = 1., (8, 2) = -23.55908364, (8, 3) = 192.6052140, (8, 4) = -856.8131732, (8, 5) = 2255.610395, (8, 6) = -3256.154493, (8, 7) = 1577.05254, (8, 8) = 2063.443568})

(5)

NULL

# ------------------------------------------------- --------------------------
# 2 / حساب مصفوفة (ب) من قبل أدومين بوليس لمصطلح غير الخطية.

"G(y):=(e)^(y)"

proc (y) options operator, arrow; exp(y) end proc

(6)

"g(x):=evalf(((4*sqrt(x))/(sqrt(Pi)))+(8/(3))*((x^(3/(2)))/(sqrt(Pi)))+2*x+x^(2)+(e)^(x^(2)))"

proc (x) options operator, arrow; evalf(4*sqrt(x)/sqrt(Pi)+(8/3)*x^(3/2)/sqrt(Pi)+2*x+x^2+exp(x^2)) end proc

(7)

#Find أدومين بولي:

for k from 0 to n-1 do AP[k] := evalf(subs(lambda = 0, (diff(G(sum(y[t]*lambda^t, t = 0 .. k)), [`$`(lambda, k)]))/factorial(k))) end do

exp(y[0])

 

y[1]*exp(y[0])

 

y[2]*exp(y[0])+.5000000000*y[1]^2*exp(y[0])

 

y[3]*exp(y[0])+y[2]*y[1]*exp(y[0])+.1666666667*y[1]^3*exp(y[0])

 

y[4]*exp(y[0])+y[3]*y[1]*exp(y[0])+.5000000000*y[2]^2*exp(y[0])+.5000000000*y[2]*y[1]^2*exp(y[0])+0.4166666667e-1*y[1]^4*exp(y[0])

 

y[5]*exp(y[0])+y[4]*y[1]*exp(y[0])+y[3]*y[2]*exp(y[0])+.5000000000*y[3]*y[1]^2*exp(y[0])+.5000000000*y[2]^2*y[1]*exp(y[0])+.1666666667*y[2]*y[1]^3*exp(y[0])+0.8333333333e-2*y[1]^5*exp(y[0])

 

y[6]*exp(y[0])+y[5]*y[1]*exp(y[0])+y[4]*y[2]*exp(y[0])+.5000000000*y[4]*y[1]^2*exp(y[0])+.5000000000*y[3]^2*exp(y[0])+y[3]*y[2]*y[1]*exp(y[0])+.1666666667*y[3]*y[1]^3*exp(y[0])+.1666666667*y[2]^3*exp(y[0])+.2500000000*y[2]^2*y[1]^2*exp(y[0])+0.4166666667e-1*y[2]*y[1]^4*exp(y[0])+0.1388888889e-2*y[1]^6*exp(y[0])

 

y[7]*exp(y[0])+.5000000000*y[3]*y[2]*y[1]^2*exp(y[0])+.5000000000*y[5]*y[1]^2*exp(y[0])+y[5]*y[2]*exp(y[0])+y[6]*y[1]*exp(y[0])+y[4]*y[3]*exp(y[0])+.5000000000*y[3]^2*y[1]*exp(y[0])+.1666666667*y[2]^3*y[1]*exp(y[0])+0.1984126984e-3*y[1]^7*exp(y[0])+y[4]*y[2]*y[1]*exp(y[0])+0.8333333333e-2*y[2]*y[1]^5*exp(y[0])+0.8333333333e-1*y[2]^2*y[1]^3*exp(y[0])+0.4166666667e-1*y[3]*y[1]^4*exp(y[0])+.5000000000*y[3]*y[2]^2*exp(y[0])+.1666666667*y[4]*y[1]^3*exp(y[0])

(8)

NULL

#Find a ماتريسز b ^ (k) و C ^ (k): = A ^ (- 1) * b ^ (k)، ثم ايجاد حل تقريبي Y [k]: = سوم (C ^ (k) [i ] * L [i]، i = 1 .. n ):

# 1) البحث ب (0)

b0 := array(1 .. n, 1 .. m-7); for i to 2 do b0[i, 1] := 0 end do; for i from 3 to n do b0[i, 1] := evalf(subs(x = x[i], g(x[i]))) end do

print(`b0=`, b0)

`b0=`, b0

(9)

b0 := convert(b0, Matrix)

b0 := Matrix(8, 1, {(1, 1) = 0, (2, 1) = 0, (3, 1) = 5.533921684, (4, 1) = 10.78339161, (5, 1) = 69.22208674, (6, 1) = 96372.14332, (7, 1) = 0.5649990671e13, (8, 1) = 0.2063418920e32})

(10)

# 2) البحث عن ج (0)

C0 := LinearSolve(A, b0)

C0 := Matrix(8, 1, {(1, 1) = -0.11474558283495975e27, (2, 1) = -0.6041534517526968e26, (3, 1) = 0.28431046341368933e27, (4, 1) = -0.1109483456679843e28, (5, 1) = 0.2601411410469915e28, (6, 1) = -0.34736953613415415e28, (7, 1) = 0.23829217145639085e28, (8, 1) = -0.634449734180237e27}, datatype = float[8])

(11)

for i to n do k0[i] := C0[i, 1] end do

HFloat(-1.1474558283495975e26)

 

HFloat(-6.041534517526968e25)

 

HFloat(2.8431046341368933e26)

 

HFloat(-1.109483456679843e27)

 

HFloat(2.601411410469915e27)

 

HFloat(-3.4736953613415415e27)

 

HFloat(2.3829217145639085e27)

 

HFloat(-6.34449734180237e26)

(12)

# 3) البحث عن y (0)

y[0] := sum(k0[s]*L(s-1, 2*x-1), s = 1 .. 8)

-HFloat (5.083969685801073e25) -HFloat (1.4661238981264424e26) * س + HFloat (1.2387812172594187e26) * (2 * س 1) ^ 2-HFloat (1.9836944590452831e24) * (2 * س 1) ^ 3 HFloat (5.120751558697758 E25) * (2 * س 1) ^ 4 + HFloat (2.0830079097858884e25) * (2 * س 1) ^ 5 HFloat (2.8586478120802086e24) * (2 * س 1) ^ 6 + HFloat (1.2588288376592004e23) * (2 * س 1) ^ 7

(13)

# -------------------------

#Find b (1)

لا شيء

لا شيء

لا شيء

b1: = أري (1 .. n، 1 .. m-7)؛  ل i تو 2 دو b1 [i، 1]: = 0 إند دو؛  من i إلى n n b1 [i، 1]: = سوبس (x = x [i]، أب [0]) إند دو

برينت (`b1 =`، b1)

`b1 =`، b1

(14)

b1: = كونفيرت (b1، ماتريكس)

b1: = مصفوفة (8، 1، {(1، 1) = 0، (2، 1) = 0، (3، 1) = إكس (هفلوات (-1.3446720400287247e26))، (4، 1) = إكس هفلوت (-1.000132892371102e26))، (5، 1) = إكس (هفلوت (-1.7743764624635952e26))، (6، 1) = إكس (هفلوت (9.701444095568667e26))، (7، 1) = إكس 1.9741498268709318e28))، (8، 1) = إكس (هفلوات (4.2920269682087554e30))})

(15)

لا شيء

# 2) البحث ج (1)

لينيرزولف (A، b1)

المصفوفة ([هفلوات (هفلوات (وندفيند))]، [هفلوت (هفلوات (وندفيند))]، [هفلوات (هفلوات (وندفيند))]، [هفلوات (هفلوات (وندفيند))]، [هفلوات (هفلوات (وندفيند) )، [هفلوات (هفلوات (وندفيند))]، [هفلوات (هفلوات (وندفيند))]، [هفلوات (هفلوات (وندفيند))]])

(16)

لا شيء


 

تحميل jam.mw

Hi everybody,

I want to solve numerically an ode and I get this error (undocumented on the maplesoft web site https://www.maplesoft.com/support/help/errors/....)

Error, (in sol) maximum number of event iterations reached (100) at t=2.6610663

I understand where this error can come from but the help pages don't say anything to fix this.
There is some stuff about round-off that could help but I don't understand how to use it.

I would be grateful if you provide me some help.
Thanks in advance


Download ErrorWithDsolve.mw

 

 

First 905 906 907 908 909 910 911 Last Page 907 of 2434