MaplePrimes Questions

Dear Users!

Hope you would be fine with everying. I want to solve the following 2nd order linear differential equation. 

(1+B)*(diff(theta(eta), eta, eta))+C*A*(diff(theta(eta), eta)) = 0;
where A is given as

A := -(alpha*exp(-sqrt((omega+1)*omega*(M^2+alpha+1))*eta/(omega+1))*omega+alpha*exp(-sqrt((omega+1)*omega*(M^2+alpha+1))*eta/(omega+1))+exp(-sqrt((omega+1)*omega*(M^2+alpha+1))*eta/(omega+1))*omega-alpha*omega+exp(-sqrt((omega+1)*omega*(M^2+alpha+1))*eta/(omega+1))-alpha-omega-1)/sqrt((omega+1)*omega*(M^2+alpha+1));
I want solution for any values of omega, alpha, M, B, C and L. The BCs are below:

BCs := (D(theta))(0) = -1, theta(L) = 0.

I am waiting your response, 

Write a command maple to count each two elements distincts of a list L ?

Hello,

There is a error happened when i use the command "eliminate" ,

And,the target two equations is:

[190.0315457*d^6-7.601261828*d^4+344.0*c^2*d^2-2.677685950*c^4, 0.6830134554e-2*c^4+2084.317025*d^8-166.7453620*d^6+3.334907240*d^4-c^2*d^2]

The error is happened like that shown below.

Error, (in unknown) invalid arguments to divide: 4903.60312, 1.000000000 to use eliminate command!

I wonder why this error happened, could anyone help me!

Thanks!!!

to get the list where all the elements of a list L equal to its largest element are replaced by 0 ?

Hi everyone,

I have a x -> y = f(x) function from R to R (you may suppose f is C(infinity)),  given by an explicit relation.
This function is not strictly monotonic over R.

I want to construct the global inverse of f over R by putting "side by side" local inverse functions.
Let a__0, ..., a__n values of x such that:

  1. -infinity =a__0 < a__1 < ... a__(n-1) < a__n = + infinity
  2. f is monotonic over ] a__p, a__(p+1) [   for each p=0..n-1

The idea is to define the global inverse g of f over R by
g := y ->  piecewise(y < f(a__1), g__0(y), ..., y < f(a__n), g__(n-1)(y))
where g__p(y), is the inverse function of the restriction of f to ] a__p, a__(p+1) [
 

Toy problem
f := x ->1-(1-x)^2;
x__1 := solve(diff(f(x), x);
y__1 := f(x__1);

# I thought one of these commands could work (but they don't return me a single branch as I had expected)
solve(f(x)=y, x) assuming y < y__1;
solve({f(x)=y, x < x__1}, x);

How can I obtain the inverse of a function f over an interval where f is bijective ?


TIA

 

 

 

I think that maple is actually evaluating this series into what ever ridiculously long closed form expression the expansion of the series has, but i just want the latex for what i have entered.

How do i tell maple to not evaluate something?
 

latex(a[p, q] = sum(cos(2*Pi*(p+1)*(n-1)/q), n = 1 .. q))

a_{{p,q}}= \left( -4\, \left( \cos \left( {\frac {\pi }{q}} \right)
 \right) ^{2}+8\, \left( \cos \left( {\frac {\pi \,p}{q}} \right)
 \right) ^{2} \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{
2}-8\,\sin \left( {\frac {\pi \,p}{q}} \right) \cos \left( {\frac {

\pi \,p}{q}} \right) \sin \left( {\frac {\pi }{q}} \right) \cos
 \left( {\frac {\pi }{q}} \right) +3-4\, \left( \cos \left( {\frac {
\pi \,p}{q}} \right)  \right) ^{2} \right)  \left( \cos \left( {\frac
{\pi \, \left( q+1 \right) }{q}} \right)  \right) ^{2}+ \left( -4\,
 \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{2}+8\,
 \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{2} \left(
\cos \left( {\frac {\pi }{q}} \right)  \right) ^{2}-8\,\sin \left( {
\frac {\pi \,p}{q}} \right) \cos \left( {\frac {\pi \,p}{q}} \right)
\sin \left( {\frac {\pi }{q}} \right) \cos \left( {\frac {\pi }{q}}
 \right) +3-4\, \left( \cos \left( {\frac {\pi \,p}{q}} \right)
 \right) ^{2} \right)  \left( \cos \left( {\frac {\pi \, \left( q+1
 \right) p}{q}} \right)  \right) ^{2}+ \left( 8\, \left( \cos \left( {
\frac {\pi }{q}} \right)  \right) ^{2}-16\, \left( \cos \left( {\frac
{\pi \,p}{q}} \right)  \right) ^{2} \left( \cos \left( {\frac {\pi }{q
}} \right)  \right) ^{2}+16\,\sin \left( {\frac {\pi \,p}{q}} \right)
\cos \left( {\frac {\pi \,p}{q}} \right) \sin \left( {\frac {\pi }{q}}
 \right) \cos \left( {\frac {\pi }{q}} \right) -6+8\, \left( \cos
 \left( {\frac {\pi \,p}{q}} \right)  \right) ^{2} \right)  \left(
\cos \left( {\frac {\pi \, \left( q+1 \right) p}{q}} \right)  \right)
^{2} \left( \cos \left( {\frac {\pi \, \left( q+1 \right) }{q}}
 \right)  \right) ^{2}+ \left( 8\,\sin \left( {\frac {\pi \,p}{q}}
 \right) \cos \left( {\frac {\pi \,p}{q}} \right)  \left( \cos \left(
{\frac {\pi }{q}} \right)  \right) ^{4}-4\, \left( \cos \left( {\frac
{\pi }{q}} \right)  \right) ^{3}\sin \left( {\frac {\pi }{q}} \right)
+8\, \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{2}
 \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{3}\sin
 \left( {\frac {\pi }{q}} \right) -4\,\sin \left( {\frac {\pi \,p}{q}}
 \right) \cos \left( {\frac {\pi \,p}{q}} \right)  \left( \cos \left(
{\frac {\pi }{q}} \right)  \right) ^{2}-8\,\sin \left( {\frac {\pi \,p
}{q}} \right)  \left( \cos \left( {\frac {\pi \,p}{q}} \right)
 \right) ^{3} \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{
2}-8\,\sin \left( {\frac {\pi }{q}} \right) \cos \left( {\frac {\pi }{
q}} \right)  \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right)
^{4}+\sin \left( {\frac {\pi }{q}} \right) \cos \left( {\frac {\pi }{q
}} \right) +4\, \left( \cos \left( {\frac {\pi \,p}{q}} \right)
 \right) ^{2}\sin \left( {\frac {\pi }{q}} \right) \cos \left( {\frac
{\pi }{q}} \right) +4\,\sin \left( {\frac {\pi \,p}{q}} \right)
 \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{3}-\sin
 \left( {\frac {\pi \,p}{q}} \right) \cos \left( {\frac {\pi \,p}{q}}
 \right)  \right) \sin \left( {\frac {\pi \, \left( q+1 \right) }{q}}
 \right) \cos \left( {\frac {\pi \, \left( q+1 \right) }{q}} \right)
 \left( - \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{2
}+ \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{2} \right)
^{-1}+ \left( 8\,\sin \left( {\frac {\pi \,p}{q}} \right) \cos \left(
{\frac {\pi \,p}{q}} \right)  \left( \cos \left( {\frac {\pi }{q}}
 \right)  \right) ^{4}-4\, \left( \cos \left( {\frac {\pi }{q}}
 \right)  \right) ^{3}\sin \left( {\frac {\pi }{q}} \right) +8\,
 \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{2} \left(
\cos \left( {\frac {\pi }{q}} \right)  \right) ^{3}\sin \left( {\frac
{\pi }{q}} \right) -4\,\sin \left( {\frac {\pi \,p}{q}} \right) \cos
 \left( {\frac {\pi \,p}{q}} \right)  \left( \cos \left( {\frac {\pi }
{q}} \right)  \right) ^{2}-8\,\sin \left( {\frac {\pi \,p}{q}}
 \right)  \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{3
} \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{2}-8\,\sin
 \left( {\frac {\pi }{q}} \right) \cos \left( {\frac {\pi }{q}}
 \right)  \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{4
}+\sin \left( {\frac {\pi }{q}} \right) \cos \left( {\frac {\pi }{q}}
 \right) +4\, \left( \cos \left( {\frac {\pi \,p}{q}} \right)
 \right) ^{2}\sin \left( {\frac {\pi }{q}} \right) \cos \left( {\frac
{\pi }{q}} \right) +4\,\sin \left( {\frac {\pi \,p}{q}} \right)
 \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{3}-\sin
 \left( {\frac {\pi \,p}{q}} \right) \cos \left( {\frac {\pi \,p}{q}}
 \right)  \right) \sin \left( {\frac {\pi \, \left( q+1 \right) p}{q}}
 \right) \cos \left( {\frac {\pi \, \left( q+1 \right) p}{q}} \right)
 \left( - \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{2
}+ \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{2} \right)
^{-1}-2\, \left( 8\,\sin \left( {\frac {\pi \,p}{q}} \right) \cos
 \left( {\frac {\pi \,p}{q}} \right)  \left( \cos \left( {\frac {\pi }
{q}} \right)  \right) ^{4}-4\, \left( \cos \left( {\frac {\pi }{q}}
 \right)  \right) ^{3}\sin \left( {\frac {\pi }{q}} \right) +8\,
 \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{2} \left(
\cos \left( {\frac {\pi }{q}} \right)  \right) ^{3}\sin \left( {\frac
{\pi }{q}} \right) -4\,\sin \left( {\frac {\pi \,p}{q}} \right) \cos
 \left( {\frac {\pi \,p}{q}} \right)  \left( \cos \left( {\frac {\pi }
{q}} \right)  \right) ^{2}-8\,\sin \left( {\frac {\pi \,p}{q}}
 \right)  \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{3
} \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{2}-8\,\sin
 \left( {\frac {\pi }{q}} \right) \cos \left( {\frac {\pi }{q}}
 \right)  \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{4
}+\sin \left( {\frac {\pi }{q}} \right) \cos \left( {\frac {\pi }{q}}
 \right) +4\, \left( \cos \left( {\frac {\pi \,p}{q}} \right)
 \right) ^{2}\sin \left( {\frac {\pi }{q}} \right) \cos \left( {\frac
{\pi }{q}} \right) +4\,\sin \left( {\frac {\pi \,p}{q}} \right)
 \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{3}-\sin
 \left( {\frac {\pi \,p}{q}} \right) \cos \left( {\frac {\pi \,p}{q}}
 \right)  \right)  \left( \cos \left( {\frac {\pi \, \left( q+1
 \right) p}{q}} \right)  \right) ^{2}\sin \left( {\frac {\pi \,
 \left( q+1 \right) }{q}} \right) \cos \left( {\frac {\pi \, \left( q+
1 \right) }{q}} \right)  \left( - \left( \cos \left( {\frac {\pi \,p}{
q}} \right)  \right) ^{2}+ \left( \cos \left( {\frac {\pi }{q}}
 \right)  \right) ^{2} \right) ^{-1}-2\, \left( 8\,\sin \left( {\frac
{\pi \,p}{q}} \right) \cos \left( {\frac {\pi \,p}{q}} \right)
 \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{4}-4\,
 \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{3}\sin
 \left( {\frac {\pi }{q}} \right) +8\, \left( \cos \left( {\frac {\pi
\,p}{q}} \right)  \right) ^{2} \left( \cos \left( {\frac {\pi }{q}}
 \right)  \right) ^{3}\sin \left( {\frac {\pi }{q}} \right) -4\,\sin
 \left( {\frac {\pi \,p}{q}} \right) \cos \left( {\frac {\pi \,p}{q}}
 \right)  \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{2}-8
\,\sin \left( {\frac {\pi \,p}{q}} \right)  \left( \cos \left( {\frac
{\pi \,p}{q}} \right)  \right) ^{3} \left( \cos \left( {\frac {\pi }{q
}} \right)  \right) ^{2}-8\,\sin \left( {\frac {\pi }{q}} \right) \cos
 \left( {\frac {\pi }{q}} \right)  \left( \cos \left( {\frac {\pi \,p}
{q}} \right)  \right) ^{4}+\sin \left( {\frac {\pi }{q}} \right) \cos
 \left( {\frac {\pi }{q}} \right) +4\, \left( \cos \left( {\frac {\pi
\,p}{q}} \right)  \right) ^{2}\sin \left( {\frac {\pi }{q}} \right)
\cos \left( {\frac {\pi }{q}} \right) +4\,\sin \left( {\frac {\pi \,p}
{q}} \right)  \left( \cos \left( {\frac {\pi \,p}{q}} \right)
 \right) ^{3}-\sin \left( {\frac {\pi \,p}{q}} \right) \cos \left( {
\frac {\pi \,p}{q}} \right)  \right) \sin \left( {\frac {\pi \,
 \left( q+1 \right) p}{q}} \right) \cos \left( {\frac {\pi \, \left( q
+1 \right) p}{q}} \right)  \left( \cos \left( {\frac {\pi \, \left( q+
1 \right) }{q}} \right)  \right) ^{2} \left( - \left( \cos \left( {
\frac {\pi \,p}{q}} \right)  \right) ^{2}+ \left( \cos \left( {\frac {
\pi }{q}} \right)  \right) ^{2} \right) ^{-1}+ \left( -8\, \left( \cos
 \left( {\frac {\pi }{q}} \right)  \right) ^{2}+16\, \left( \cos
 \left( {\frac {\pi \,p}{q}} \right)  \right) ^{2} \left( \cos \left(
{\frac {\pi }{q}} \right)  \right) ^{2}-16\,\sin \left( {\frac {\pi \,
p}{q}} \right) \cos \left( {\frac {\pi \,p}{q}} \right) \sin \left( {
\frac {\pi }{q}} \right) \cos \left( {\frac {\pi }{q}} \right) +6-8\,
 \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{2}
 \right) \sin \left( {\frac {\pi \, \left( q+1 \right) p}{q}} \right)
\cos \left( {\frac {\pi \, \left( q+1 \right) p}{q}} \right) \sin
 \left( {\frac {\pi \, \left( q+1 \right) }{q}} \right) \cos \left( {
\frac {\pi \, \left( q+1 \right) }{q}} \right) - \left( -4\, \left(
\cos \left( {\frac {\pi }{q}} \right)  \right) ^{2}+8\, \left( \cos
 \left( {\frac {\pi \,p}{q}} \right)  \right) ^{2} \left( \cos \left(
{\frac {\pi }{q}} \right)  \right) ^{2}-8\,\sin \left( {\frac {\pi \,p
}{q}} \right) \cos \left( {\frac {\pi \,p}{q}} \right) \sin \left( {
\frac {\pi }{q}} \right) \cos \left( {\frac {\pi }{q}} \right) +3-4\,
 \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{2}
 \right)  \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{2}-
 \left( -4\, \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{2
}+8\, \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{2}
 \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{2}-8\,\sin
 \left( {\frac {\pi \,p}{q}} \right) \cos \left( {\frac {\pi \,p}{q}}
 \right) \sin \left( {\frac {\pi }{q}} \right) \cos \left( {\frac {
\pi }{q}} \right) +3-4\, \left( \cos \left( {\frac {\pi \,p}{q}}
 \right)  \right) ^{2} \right)  \left( \cos \left( {\frac {\pi \,p}{q}
} \right)  \right) ^{2}- \left( 8\, \left( \cos \left( {\frac {\pi }{q
}} \right)  \right) ^{2}-16\, \left( \cos \left( {\frac {\pi \,p}{q}}
 \right)  \right) ^{2} \left( \cos \left( {\frac {\pi }{q}} \right)
 \right) ^{2}+16\,\sin \left( {\frac {\pi \,p}{q}} \right) \cos
 \left( {\frac {\pi \,p}{q}} \right) \sin \left( {\frac {\pi }{q}}
 \right) \cos \left( {\frac {\pi }{q}} \right) -6+8\, \left( \cos
 \left( {\frac {\pi \,p}{q}} \right)  \right) ^{2} \right)  \left(
\cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{2} \left( \cos
 \left( {\frac {\pi }{q}} \right)  \right) ^{2}- \left( 8\,\sin
 \left( {\frac {\pi \,p}{q}} \right) \cos \left( {\frac {\pi \,p}{q}}
 \right)  \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{4}-4
\, \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{3}\sin
 \left( {\frac {\pi }{q}} \right) +8\, \left( \cos \left( {\frac {\pi
\,p}{q}} \right)  \right) ^{2} \left( \cos \left( {\frac {\pi }{q}}
 \right)  \right) ^{3}\sin \left( {\frac {\pi }{q}} \right) -4\,\sin
 \left( {\frac {\pi \,p}{q}} \right) \cos \left( {\frac {\pi \,p}{q}}
 \right)  \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{2}-8
\,\sin \left( {\frac {\pi \,p}{q}} \right)  \left( \cos \left( {\frac
{\pi \,p}{q}} \right)  \right) ^{3} \left( \cos \left( {\frac {\pi }{q
}} \right)  \right) ^{2}-8\,\sin \left( {\frac {\pi }{q}} \right) \cos
 \left( {\frac {\pi }{q}} \right)  \left( \cos \left( {\frac {\pi \,p}
{q}} \right)  \right) ^{4}+\sin \left( {\frac {\pi }{q}} \right) \cos
 \left( {\frac {\pi }{q}} \right) +4\, \left( \cos \left( {\frac {\pi
\,p}{q}} \right)  \right) ^{2}\sin \left( {\frac {\pi }{q}} \right)
\cos \left( {\frac {\pi }{q}} \right) +4\,\sin \left( {\frac {\pi \,p}
{q}} \right)  \left( \cos \left( {\frac {\pi \,p}{q}} \right)
 \right) ^{3}-\sin \left( {\frac {\pi \,p}{q}} \right) \cos \left( {
\frac {\pi \,p}{q}} \right)  \right) \sin \left( {\frac {\pi }{q}}
 \right) \cos \left( {\frac {\pi }{q}} \right)  \left( - \left( \cos
 \left( {\frac {\pi \,p}{q}} \right)  \right) ^{2}+ \left( \cos
 \left( {\frac {\pi }{q}} \right)  \right) ^{2} \right) ^{-1}- \left(
8\,\sin \left( {\frac {\pi \,p}{q}} \right) \cos \left( {\frac {\pi \,
p}{q}} \right)  \left( \cos \left( {\frac {\pi }{q}} \right)  \right)
^{4}-4\, \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{3}
\sin \left( {\frac {\pi }{q}} \right) +8\, \left( \cos \left( {\frac {
\pi \,p}{q}} \right)  \right) ^{2} \left( \cos \left( {\frac {\pi }{q}
} \right)  \right) ^{3}\sin \left( {\frac {\pi }{q}} \right) -4\,\sin
 \left( {\frac {\pi \,p}{q}} \right) \cos \left( {\frac {\pi \,p}{q}}
 \right)  \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{2}-8
\,\sin \left( {\frac {\pi \,p}{q}} \right)  \left( \cos \left( {\frac
{\pi \,p}{q}} \right)  \right) ^{3} \left( \cos \left( {\frac {\pi }{q
}} \right)  \right) ^{2}-8\,\sin \left( {\frac {\pi }{q}} \right) \cos
 \left( {\frac {\pi }{q}} \right)  \left( \cos \left( {\frac {\pi \,p}
{q}} \right)  \right) ^{4}+\sin \left( {\frac {\pi }{q}} \right) \cos
 \left( {\frac {\pi }{q}} \right) +4\, \left( \cos \left( {\frac {\pi
\,p}{q}} \right)  \right) ^{2}\sin \left( {\frac {\pi }{q}} \right)
\cos \left( {\frac {\pi }{q}} \right) +4\,\sin \left( {\frac {\pi \,p}
{q}} \right)  \left( \cos \left( {\frac {\pi \,p}{q}} \right)
 \right) ^{3}-\sin \left( {\frac {\pi \,p}{q}} \right) \cos \left( {
\frac {\pi \,p}{q}} \right)  \right) \sin \left( {\frac {\pi \,p}{q}}
 \right) \cos \left( {\frac {\pi \,p}{q}} \right)  \left( - \left(
\cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{2}+ \left( \cos
 \left( {\frac {\pi }{q}} \right)  \right) ^{2} \right) ^{-1}+2\,
 \left( 8\,\sin \left( {\frac {\pi \,p}{q}} \right) \cos \left( {
\frac {\pi \,p}{q}} \right)  \left( \cos \left( {\frac {\pi }{q}}
 \right)  \right) ^{4}-4\, \left( \cos \left( {\frac {\pi }{q}}
 \right)  \right) ^{3}\sin \left( {\frac {\pi }{q}} \right) +8\,
 \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{2} \left(
\cos \left( {\frac {\pi }{q}} \right)  \right) ^{3}\sin \left( {\frac
{\pi }{q}} \right) -4\,\sin \left( {\frac {\pi \,p}{q}} \right) \cos
 \left( {\frac {\pi \,p}{q}} \right)  \left( \cos \left( {\frac {\pi }
{q}} \right)  \right) ^{2}-8\,\sin \left( {\frac {\pi \,p}{q}}
 \right)  \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{3
} \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{2}-8\,\sin
 \left( {\frac {\pi }{q}} \right) \cos \left( {\frac {\pi }{q}}
 \right)  \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{4
}+\sin \left( {\frac {\pi }{q}} \right) \cos \left( {\frac {\pi }{q}}
 \right) +4\, \left( \cos \left( {\frac {\pi \,p}{q}} \right)
 \right) ^{2}\sin \left( {\frac {\pi }{q}} \right) \cos \left( {\frac
{\pi }{q}} \right) +4\,\sin \left( {\frac {\pi \,p}{q}} \right)
 \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{3}-\sin
 \left( {\frac {\pi \,p}{q}} \right) \cos \left( {\frac {\pi \,p}{q}}
 \right)  \right)  \left( \cos \left( {\frac {\pi \,p}{q}} \right)
 \right) ^{2}\sin \left( {\frac {\pi }{q}} \right) \cos \left( {\frac
{\pi }{q}} \right)  \left( - \left( \cos \left( {\frac {\pi \,p}{q}}
 \right)  \right) ^{2}+ \left( \cos \left( {\frac {\pi }{q}} \right)
 \right) ^{2} \right) ^{-1}+2\, \left( 8\,\sin \left( {\frac {\pi \,p}
{q}} \right) \cos \left( {\frac {\pi \,p}{q}} \right)  \left( \cos
 \left( {\frac {\pi }{q}} \right)  \right) ^{4}-4\, \left( \cos
 \left( {\frac {\pi }{q}} \right)  \right) ^{3}\sin \left( {\frac {
\pi }{q}} \right) +8\, \left( \cos \left( {\frac {\pi \,p}{q}}
 \right)  \right) ^{2} \left( \cos \left( {\frac {\pi }{q}} \right)
 \right) ^{3}\sin \left( {\frac {\pi }{q}} \right) -4\,\sin \left( {
\frac {\pi \,p}{q}} \right) \cos \left( {\frac {\pi \,p}{q}} \right)
 \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{2}-8\,\sin
 \left( {\frac {\pi \,p}{q}} \right)  \left( \cos \left( {\frac {\pi
\,p}{q}} \right)  \right) ^{3} \left( \cos \left( {\frac {\pi }{q}}
 \right)  \right) ^{2}-8\,\sin \left( {\frac {\pi }{q}} \right) \cos
 \left( {\frac {\pi }{q}} \right)  \left( \cos \left( {\frac {\pi \,p}
{q}} \right)  \right) ^{4}+\sin \left( {\frac {\pi }{q}} \right) \cos
 \left( {\frac {\pi }{q}} \right) +4\, \left( \cos \left( {\frac {\pi
\,p}{q}} \right)  \right) ^{2}\sin \left( {\frac {\pi }{q}} \right)
\cos \left( {\frac {\pi }{q}} \right) +4\,\sin \left( {\frac {\pi \,p}
{q}} \right)  \left( \cos \left( {\frac {\pi \,p}{q}} \right)
 \right) ^{3}-\sin \left( {\frac {\pi \,p}{q}} \right) \cos \left( {
\frac {\pi \,p}{q}} \right)  \right) \sin \left( {\frac {\pi \,p}{q}}
 \right) \cos \left( {\frac {\pi \,p}{q}} \right)  \left( \cos \left(
{\frac {\pi }{q}} \right)  \right) ^{2} \left( - \left( \cos \left( {
\frac {\pi \,p}{q}} \right)  \right) ^{2}+ \left( \cos \left( {\frac {
\pi }{q}} \right)  \right) ^{2} \right) ^{-1}- \left( -8\, \left( \cos
 \left( {\frac {\pi }{q}} \right)  \right) ^{2}+16\, \left( \cos
 \left( {\frac {\pi \,p}{q}} \right)  \right) ^{2} \left( \cos \left(
{\frac {\pi }{q}} \right)  \right) ^{2}-16\,\sin \left( {\frac {\pi \,
p}{q}} \right) \cos \left( {\frac {\pi \,p}{q}} \right) \sin \left( {
\frac {\pi }{q}} \right) \cos \left( {\frac {\pi }{q}} \right) +6-8\,
 \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{2}
 \right) \sin \left( {\frac {\pi \,p}{q}} \right) \cos \left( {\frac {
\pi \,p}{q}} \right) \sin \left( {\frac {\pi }{q}} \right) \cos
 \left( {\frac {\pi }{q}} \right)

 

``


 

Download MAPLE_PLEASE_HELPS_BECOZ_MAPLE_IS_FRENS.mw

I am trying to use Monte Carlo integration example given at: https://www.maplesoft.com/products/maple/new_features/maple15/examples/montecarlo.aspx.

After coding the procedure, the statement approxint(x^2, x = 1 .. 3)

gives error: Error, (in approxint) invalid input: `if` expects 3 arguments, but received 1

But I have used in exactly the same way as given in the page. What is the problem

Are we allowed to ask questions about only math or does it have to only be a problem with maple code?

I have modeled a 3D flexible manipulator in Maplesim. I intend to measure the torsional strain of the flexible beams. How can I do this??

Hey guys, I have created this vector field at t=0. Now I would like to ask how can I animate this vector field changing to let say t=0 to 10. Thanks already! Check the code I already wrote and uploaded.upload.mw

Can there be approximate ways of calculating the derivative? Maybe I should count on some formula? Or can not it be calculated in any way at all?

I want to solve transcendental equation in maple and facing problem to plot  “β” vs “a” plot, using Eq. 8, 9, 10...

PDF file attached below:

Equation_file.pdf

restart; with(plots);
G := 1; M := .1; R := 1; P := .72; alpha := .1; phi := 1; K := 1; n := 2; beta := 1;
                               1
                              0.1
                               1
                              0.72
                              0.1
                               1
                               1
                               2
                               1
ode1 := {(1+(4/3)*R)*(diff(theta(x), x, x))+(1/2)*P*f(x)*(diff(theta(x), x))+alpha*theta(x) = 0, n*(diff(f(x), x, x))^(n-1)*(diff(f(x), x, x, x))+f(x)*(diff(f(x), x, x))/(n+1)+G*theta(x)-M*(diff(f(x), x)) = 0, f(0) = 0, theta(10) = 0, (D(f))(0) = beta*K*((D@@2)(f))(0), (D(f))(10) = 1, (D(theta))(0) = -phi*(1-theta(0))};
 /7  d  / d          \                     / d          \
{ - --- |--- theta(x)| + 0.3600000000 f(x) |--- theta(x)|
 \3  dx \ dx         /                     \ dx         /

                         / d  / d      \\ / d  / d  / d      \\\
   + 0.1 theta(x) = 0, 2 |--- |--- f(x)|| |--- |--- |--- f(x)|||
                         \ dx \ dx     // \ dx \ dx \ dx     ///

     1      / d  / d      \\                  / d      \      
   + - f(x) |--- |--- f(x)|| + theta(x) - 0.1 |--- f(x)| = 0,
     3      \ dx \ dx     //                  \ dx     /      

  f(0) = 0, theta(10) = 0, D(f)(0) = @@(D, 2)(f)(0),

                                           \
  D(f)(10) = 1, D(theta)(0) = -1 + theta(0) }
                                           /
dsol := dsolve(ode1, numeric, method = bvp[midrich], range = 0 .. 10);
Error, (in dsolve/numeric/bvp) initial Newton iteration is not converging

 

I try to get real solutions for a PDE, i.e. real-valued functions depending on real variables. Maple computer complex solutions, i.e. complex-valued functions depending on complex variables.

Here is the example in question: (the four function f1, f2, f3, f4 depend on the four unknowns lam, mu, l, m)

`assuming`([pdsolve([diff(f2(lam, mu, l, m), m)-(diff(f1(lam, mu, l, m), l))-(diff(f4(lam, mu, l, m), mu))+diff(f3(lam, mu, l, m), lam) = 0, diff(f1(lam, mu, l, m), m)+diff(f2(lam, mu, l, m), l)-(diff(f3(lam, mu, l, m), mu))-(diff(f4(lam, mu, l, m), lam)) = 0])], [real])

`assuming`([pdsolve([diff(f2(lam, mu, l, m), m)-(diff(f1(lam, mu, l, m), l))-(diff(f4(lam, mu, l, m), mu))+diff(f3(lam, mu, l, m), lam) = 0, diff(f1(lam, mu, l, m), m)+diff(f2(lam, mu, l, m), l)-(diff(f3(lam, mu, l, m), mu))-(diff(f4(lam, mu, l, m), lam)) = 0])], [real])

How can I solve my problem and receive only real solutions to my PDE?

A similar problem had been posted before (see here), but I can only find a cached version of the post where no answers are displayed.

Hi,

I would like to control the extents of my 3D parametric plot. Increasing the grid creates too many gridlines and I just get a black plot  (and I still don't get the extent in the y-coordinate that I want).

Any suggestions how I might be able to get this plot from -360 to 0 and -20 to 60 completely filled in? (see attached workbook).

Any suggestions on how to control the gridlines?

An idea of what I am trying to do...I want to plot argument(z/(1+z)) vs. argument(z)*180/pi vs. 20*log10(abs(z)) with contours of argument(z/(1+z)) and 20*log10(abs(z/(1+z))
This is a 3D plot of the output phase of a Nichol's Chart (with the output contours of the Nichol's chart).

Thanks.

phaseplot.mw

First 638 639 640 641 642 643 644 Last Page 640 of 2234