MaplePrimes Questions


Suppose I have a triplet a[5], a[6], a[7]and an expression given as below:

V[5]*a[5]+V[6]*a[6]+V[7]*a[7]+V[2]+V[9]

How I can list all possible forms of above expression for triplet "(a[5], a[6], a[7])->(a[5], a[6], a[7]), (a[5], a[6], 0), (a[5], 0, a[7]), (0, a[6], a[7]), (a[5], 0, 0), (0, a[6], 0 ), (0, 0, a[7]), (0, a[6], 0), (0, 0, 0) "etc


Download triplet.mw

Regards

Dear all

I need a help to compute the integral from -1 to 1 of product of derivative of legendre polynomial

> restart;
> with(orthopoly);

P(n, x); # Designe the legendre polynomial of degree n
I would like to compute

int(diff(P(n,x),x)*diff(P(m,x),x),x=-1..1) ;

 

In this previous formula when I put n=2 and m=3 I can get the result but in general  case i cannot,

Many thanks

 

 

Howdy all,

I am trying to create a solar system model by defining a force equation then using the sequence function to create a differential equation and then solving those differential equations using the initial conditions (in X,Y,Z coordinates). So far I have the code below.


m[1] = 1.989*10^30; m[2] = 3.301*10^23; m[3] = 4.867*10^24; m[4] = 5.972*10^24+7.346*10^22; m[5] = 6.417*10^23; m[6] = 1.899*10^27; m[7] = 5.685*10^26; m[8] = 8.682*10^25; m[9] = 1.024*10^26; m[10] = 1.471*10^22; m[11] = 9.3*10^20; m[12] = 2.6*10^20; m[13] = 2*10^20; m[14] = 8.67*10^19; m[15] = 3.9*10^19; mass := Matrix(15, 1, [1.989*10^30, 3.301*10^23, 4.867*10^24, 5.972*10^24+7.346*10^22, 6.417*10^23, 1.899*10^27, 5.685*10^26, 8.682*10^25, 1.024*10^26, 1.471*10^22, 9.3*10^20, 2.6*10^20, 2*10^20, 8.67*10^19, 3.9*10^19]); G := 6.67408*10^(-11)

mass := Vector(4, {(1) = ` 15 x 1 `*Matrix, (2) = `Data Type: `*anything, (3) = `Storage: `*rectangular, (4) = `Order: `*Fortran_order})

 

0.6674080000e-10

(1)

sqrt(sum(x[i](t)^2, i = 1 .. 3));

(x[1](t)^2+x[2](t)^2+x[3](t)^2)^(1/2)

 

proc (i, j) options operator, arrow; sqrt(sum((x[i, k](t)-x[j, k](t))^2, k = 1 .. 3)) end proc

 

((x[1, 1](t)-x[3, 1](t))^2+(x[1, 2](t)-x[3, 2](t))^2+(x[1, 3](t)-x[3, 3](t))^2)^(1/2)

 

proc (i, j) options operator, arrow; [x[j, 1](t)-x[i, 1](t), x[j, 2](t)-x[i, 2](t), x[j, 3](t)-x[i, 3](t)] end proc

 

[x[3, 1](t)-x[1, 1](t), x[3, 2](t)-x[1, 2](t), x[3, 3](t)-x[1, 3](t)]

 

x[3, 1](t)-x[1, 1](t)

 

x[j, 1](t)-x[i, 1](t), x[j, 2](t)-x[i, 2](t), x[j, 3](t)-x[i, 3](t)

 

proc (i, j) options operator, arrow; [seq(x[j, k](t)-x[i, k](t), k = 1 .. 3)] end proc

 

[x[3, 1](t)-x[1, 1](t), x[3, 2](t)-x[1, 2](t), x[3, 3](t)-x[1, 3](t)]

 

x[3, 1](t)-x[1, 1](t)

(2)

diff(x[0, 1](t), t, t) = force(0)[1]:

initialPositions := Matrix([[0, 0, 0], [-0.210e8, 0.426e8, 0.541e7], [0.106e9, -0.244e8, -0.644e7], [-0.139e9, -0.569e8, 0.316e4], [-0.177e9, -0.155e9, 0.111e7], [-0.802e9, 0.131e9, 0.174e8], [-0.480e9, -0.142e10, 0.438e8], [0.280e10, 0.103e10, -0.324e8], [0.420e10, -0.157e10, -0.645e8], [0.132e10, -0.477e10, 0.127e9], [0.431e9, -0.690e8, -0.816e8], [0.228e9, 0.305e9, -0.368e8], [0.300e9, -0.351e9, 0.217e9], [-0.434e9, -0.841e7, -0.284e8], [-0.115e9, -0.466e9, -0.612e8]])

initialPositions := Vector(4, {(1) = ` 15 x 3 `*Matrix, (2) = `Data Type: `*anything, (3) = `Storage: `*rectangular, (4) = `Order: `*Fortran_order})

(3)

initialVelocities := Matrix([[0, 0, 0], [-0.462e7, -0.170e7, 0.285e6], [0.666e6, 0.293e7, 0.183e4], [0.936e6, -0.239e7, 83.3], [0.145e7, -0.140e7, -0.650e5], [-0.196e6, -0.106e7, 0.879e4], [0.745e6, -0.271e6, -0.250e5], [-0.208e6, 0.524e6, 0.467e4], [0.161e6, 0.442e6, -0.129e5], [0.463e6, 0.294e5, -0.137e6], [0.193e6, 0.143e7, 0.923e4], [-0.119e7, 0.974e6, 0.116e6], [0.978e6, 0.562e6, -0.470e6], [0.166e6, -0.156e7, -0.131e5], [0.132e7, -0.170e6, 0.395e6]])

initialVelocities := Vector(4, {(1) = ` 15 x 3 `*Matrix, (2) = `Data Type: `*anything, (3) = `Storage: `*rectangular, (4) = `Order: `*Fortran_order})

(4)

ic1 := seq(seq(x[i, k](0) = initialPositions[i+1, k], k = 1 .. 3), i = 0 .. N-1); ic2 := seq(seq((D(x[i, k]))(0) = initialVelocities[i+1, k], k = 1 .. 3), i = 0 .. N-1); equations := {ic1, ic2, ode}; sol := dsolve(equations, numeric)

Error, (in dsolve/numeric/process_input) invalid specification of initial conditions, got {x[0, 1](0) = 0, x[0, 2](0) = 0, x[0, 3](0) = 0, x[1, 1](0) = -0.210e8, x[1, 2](0) = 0.426e8, x[1, 3](0) = 0.541e7, x[2, 1](0) = 0.106e9, x[2, 2](0) = -0.244e8, x[2, 3](0) = -0.644e7, x[3, 1](0) = -0.139e9, x[3, 2](0) = -0.569e8, x[3, 3](0) = 0.316e4, x[4, 1](0) = -0.177e9, x[4, 2](0) = -0.155e9, x[4, 3](0) = 0.111e7, x[5, 1](0) = -0.802e9, x[5, 2](0) = 0.131e9, x[5, 3](0) = 0.174e8, x[6, 1](0) = -0.480e9, x[6, 2](0) = -0.142e10, x[6, 3](0) = 0.438e8, x[7, 1](0) = 0.280e10, x[7, 2](0) = 0.103e10, x[7, 3](0) = -0.324e8, x[8, 1](0) = 0.420e10, x[8, 2](0) ...

 

plots[odeplot](sol, [x[1, 1](t), x[1, 2](t), x[1, 3](t)], t = 0 .. 20, numpoints = 1000, axes = normal)

Error, (in plots/odeplot) input is not a valid dsolve/numeric solution

 

plots[odeplot](sol, [seq(x[1, k](t), k = 1 .. 3)], t = 0 .. 20, numpoints = 1000, axes = normal)

Error, (in plots/odeplot) input is not a valid dsolve/numeric solution

 

plots[odeplot](sol, [seq([seq(x[i, k](t), k = 1 .. 3)], i = 0 .. N-1)], t = 0 .. 20, numpoints = 1000, axes = normal)

Error, (in plots/odeplot) input is not a valid dsolve/numeric solution

 

``


Download ass4.mw

Everything works fine until I try to execute the last line. When I do that I get an error that says "Error, in dsolve/numeric/process_input. invalid specifications of initial conditions.

At this point I am not sure if the problem lies in how I have defined my initial conditions or the way i've defined the force equation but I am open to any suggestions or ideas on where I should go from here.

Thanks in advance!

 

Nick

i use the pdsolve to find the solutions of a system of partial differential equations,

but the result contains some indefinite integrals, how to simplify it further?

thank you

code:

eq1 := {6*(diff(_xi[t](x, t, u), u))-3*(diff(_xi[x](x, t, u), u)), 12*(diff(_xi[t](x, t, u), u, u))-6*(diff(_xi[x](x, t, u), u, u)), 2*(diff(_xi[t](x, t, u), u, u, u))-(diff(_xi[x](x, t, u), u, u, u)), diff(_eta[u](x, t, u), t)+diff(_eta[u](x, t, u), x, x, x)+(diff(_eta[u](x, t, u), x))*u, 18*(diff(_xi[t](x, t, u), x, u))+3*(diff(_eta[u](x, t, u), u, u))-9*(diff(_xi[x](x, t, u), x, u)), 6*(diff(_xi[t](x, t, u), x, x))+3*(diff(_eta[u](x, t, u), x, u))-3*(diff(_xi[x](x, t, u), x, x)), 6*(diff(_xi[t](x, t, u), x, u, u))+diff(_eta[u](x, t, u), u, u, u)-3*(diff(_xi[x](x, t, u), x, u, u)), 12*(diff(_xi[t](x, t, u), u))-6*(diff(_xi[x](x, t, u), u))+6*(diff(_xi[t](x, t, u), x, x, u))-6*(diff(_xi[t](x, t, u), u))*u+3*u*(diff(_xi[x](x, t, u), u))-3*(diff(_xi[x](x, t, u), x, x, u))+3*(diff(_eta[u](x, t, u), x, u, u)), 12*(diff(_xi[t](x, t, u), x))-6*(diff(_xi[x](x, t, u), x))+2*(diff(_xi[t](x, t, u), t))+2*(diff(_xi[t](x, t, u), x, x, x))-4*(diff(_xi[t](x, t, u), x))*u+2*(diff(_xi[x](x, t, u), x))*u+_eta[u](x, t, u)-(diff(_xi[x](x, t, u), t))+3*(diff(_eta[u](x, t, u), x, x, u))-(diff(_xi[x](x, t, u), x, x, x))};

simplify(pdsolve(eq1))

 

I read in the net that the method used in pdsolve numeric is the theta method, my question: is it the most efficient with regard to rate of convergence of the numerical solution of the PDE?

If not then why is it used as the default method?

 

Thanks.

 

nullspace or reducedform or Eigenvectors still can not find eigenvector in terms of  mmm , how to find this?

 

mmm is a variable

 in eigenvector using nullspace and eigenvector using maple function  Eigenvectors ? 

I'm reading a string from a textbox, and I need to know where the line breaks are. Hint:They are not found by searching for \n.

Dear All, 

I am using the comand " export as" form the file menu to obatain a latex version of my worksheet. The generated latex file use a package called amplestd2e.sty that should be loaded for latex compiler to function proper. Do somebody know where to find it. Thank you. N. Jand 

Hi everybody!

I am trying to find explicitely the relations between the columns of a matrix

of non-maximal rank. For example, if I have the matrix

M := Matrix([<1,2,3>, <2,4,6>, <5,6,7>]);

I would like that Maple finds that the second column is twice the first one: v_2 = 2*v_1.

How can I do?

How to reverse the order in a list?

example:

i have m := [1, 1, 0, 0, 1, 1, 1, 0]

I want to get the output like newm:=[0,1,1,1,0,0,1,1].

How to solve? Any command can help?

if m:= [01100101, 01101100, 01100111, 01100001];

I want to get [[0,1,1,0,0,1,0,1].[0,1,1,0,1,1,0,0],[0,1,1,0,0,1,1,1],[0,1,1,0,0,0,0,1]];

Any command can solve? Thank you.

hi.please see attached file below and help me.one problem is apply differential operator on matrix and then caclute 3D integral?

maple2.mw

restart; x = zz/L; y = (2*r-b)/a; z = alpha/Pi-1; L := .1; a := 0.1e-1; b := .11; E; 207*10^9; upsilon := .3

NN1 := -((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1); NN2 := ((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1); NN3 := -((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1); NN4 := ((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1); NN5 := ((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1); NN6 := -((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1); NN7 := ((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1); NN8 := -((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1); NN9 := ((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1); NN10 := -((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1); NN11 := ((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1); NN12 := -((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1); NN13 := -((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1); NN14 := ((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1); NN15 := -((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1); NN16 := ((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)

((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)

(1)

``

 

N := Matrix([[NN1, 0, 0, NN2, 0, 0, NN3, 0, 0, NN4, 0, 0, NN5, 0, 0, NN6, 0, 0, NN7, 0, 0, NN8, 0, 0, NN9, 0, 0, NN10, 0, 0, NN11, 0, 0, NN12, 0, 0, NN13, 0, 0, NN14, 0, 0, NN15, 0, 0, NN16, 0, 0], [0, NN1, 0, 0, NN2, 0, 0, NN3, 0, 0, NN4, 0, 0, NN5, 0, 0, NN6, 0, 0, NN7, 0, 0, NN8, 0, 0, NN9, 0, 0, NN10, 0, 0, NN11, 0, 0, NN12, 0, 0, NN13, 0, 0, NN14, 0, 0, NN15, 0, 0, NN16, 0], [0, 0, NN1, 0, 0, NN2, 0, 0, NN3, 0, 0, NN4, 0, 0, NN5, 0, 0, NN6, 0, 0, NN7, 0, 0, NN8, 0, 0, NN9, 0, 0, NN10, 0, 0, NN11, 0, 0, NN12, 0, 0, NN13, 0, 0, NN14, 0, 0, NN15, 0, 0, NN16]])

RTABLE(18446744074182475774, anything, Matrix, rectangular, Fortran_order, [], 2, 1 .. 3, 1 .. 48)

(2)

"Q:=Matrix([[(2/(a))*(&PartialD;)/(&PartialD; y) , 0,0],[2/(a*y+b),2/(a*y+b)*1/(Pi)(&PartialD;)/(&PartialD;z ) ,0],[0,0,1/(L)*(&PartialD;)/(&PartialD; x)],[2/(a*y+b)*1/(Pi)(&PartialD;)/(&PartialD;z ),2/(a)(&PartialD;)/(&PartialD;y)-2/(a*y+b),0],[1/(L)*(&PartialD;)/(&PartialD; x),0,(2/(a))*(&PartialD;)/(&PartialD; y)],[0,1/(L)*(&PartialD;)/(&PartialD; x),2/(a*y+b)*1/(Pi)(&PartialD;)/(&PartialD;z )]])"

Error, invalid derivative

"Q:=Matrix([[(2/a)*(&PartialD;)/(&PartialD;y) , 0,0],[2/(a*y+b),2/(a*y+b)*1/Pi(&PartialD;)/(&PartialD;z ) ,0],[0,0,1/L*(&PartialD;)/(&PartialD; x)],[2/(a*y+b)*1/Pi(&PartialD;)/(&PartialD;z ),2/a(&PartialD;)/(&PartialD;y)-2/(a*y+b),0],[1/L*(&PartialD;)/(&PartialD; x),0,(2/a)*(&PartialD;)/(&PartialD; y)],[0,1/L*(&PartialD;)/(&PartialD; x),2/(a*y+b)*1/Pi(&PartialD;)/(&PartialD;z )]])"

 

NULL

Q := Matrix([[2*Y/a, 0, 0], [2/(a*y+b), 2*Z/((a*y+b)*Pi), 0], [0, 0, X/L], [2*Z/((a*y+b)*Pi), 2*Y/a-2/(a*y+b), 0], [X/L, 0, 2*Y/a], [0, X/L, 2*Z/((a*y+b)*Pi)]])

Matrix([[0.2e3*Y, 0, 0], [2/(0.1e-1*y+.11), 2*Z/((0.1e-1*y+.11)*Pi), 0], [0, 0, 0.1e2*X], [2*Z/((0.1e-1*y+.11)*Pi), 0.2e3*Y-2/(0.1e-1*y+.11), 0], [0.1e2*X, 0, 0.2e3*Y], [0, 0.1e2*X, 2*Z/((0.1e-1*y+.11)*Pi)]])

(3)

````

"Y :=(&PartialD;)/(&PartialD; y):X:=(&PartialD;)/(&PartialD; x):Z:=(&PartialD;)/(&PartialD; z):"

Error, Got internal error in Typesetting:-Parse : "invalid subscript selector"

"Y :=(&PartialD;)/(&PartialD; y):X:=(&PartialD;)/(&PartialD; x):Z:=(&PartialD;)/(&PartialD; z):"

 

0

(4)

````

B := Q.N

RTABLE(18446744074182476230, anything, Matrix, rectangular, Fortran_order, [], 2, 1 .. 6, 1 .. 48)

(5)

NULL

Vector(4, {(1) = ` 6 x 48 `*Matrix, (2) = `Data Type: `*anything, (3) = `Storage: `*rectangular, (4) = `Order: `*Fortran_order})

(6)

d := (1-upsilon)/(1-2*upsilon); e := upsilon/(1-2*upsilon); DD := E*Matrix([[d, e, e, 0, 0, 0], [e, d, e, 0, 0, 0], [e, e, d, 0, 0, 0], [0, 0, 0, 1/2, 0, 0], [0, 0, 0, 0, 1/2, 0], [0, 0, 0, 0, 0, 1/2]])/(1+upsilon)

Matrix([[1.346153846*E, .5769230769*E, .5769230769*E, 0, 0, 0], [.5769230769*E, 1.346153846*E, .5769230769*E, 0, 0, 0], [.5769230769*E, .5769230769*E, 1.346153846*E, 0, 0, 0], [0, 0, 0, .3846153846*E, 0, 0], [0, 0, 0, 0, .3846153846*E, 0], [0, 0, 0, 0, 0, .3846153846*E]])

(7)

T := Transpose(B).DD.B

Transpose(Matrix(6, 48, {(1, 1) = -0.2e3*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (1, 2) = 0., (1, 3) = 0., (1, 4) = 0.2e3*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (1, 5) = 0., (1, 6) = 0., (1, 7) = -0.2e3*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (1, 8) = 0., (1, 9) = 0., (1, 10) = 0.2e3*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (1, 11) = 0., (1, 12) = 0., (1, 13) = 0.2e3*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (1, 14) = 0., (1, 15) = 0., (1, 16) = -0.2e3*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (1, 17) = 0., (1, 18) = 0., (1, 19) = 0.2e3*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (1, 20) = 0., (1, 21) = 0., (1, 22) = -0.2e3*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (1, 23) = 0., (1, 24) = 0., (1, 25) = 0.2e3*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (1, 26) = 0., (1, 27) = 0., (1, 28) = -0.2e3*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (1, 29) = 0., (1, 30) = 0., (1, 31) = 0.2e3*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (1, 32) = 0., (1, 33) = 0., (1, 34) = -0.2e3*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (1, 35) = 0., (1, 36) = 0., (1, 37) = -0.2e3*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (1, 38) = 0., (1, 39) = 0., (1, 40) = 0.2e3*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (1, 41) = 0., (1, 42) = 0., (1, 43) = -0.2e3*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (1, 44) = 0., (1, 45) = 0., (1, 46) = 0.2e3*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (1, 47) = 0., (1, 48) = 0., (2, 1) = -2*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 2) = -2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (2, 3) = 0, (2, 4) = 2*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 5) = 2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (2, 6) = 0, (2, 7) = -2*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 8) = -2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (2, 9) = 0, (2, 10) = 2*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 11) = 2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (2, 12) = 0, (2, 13) = 2*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 14) = 2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (2, 15) = 0, (2, 16) = -2*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 17) = -2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (2, 18) = 0, (2, 19) = 2*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 20) = 2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (2, 21) = 0, (2, 22) = -2*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 23) = -2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (2, 24) = 0, (2, 25) = 2*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 26) = 2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (2, 27) = 0, (2, 28) = -2*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 29) = -2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (2, 30) = 0, (2, 31) = 2*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 32) = 2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (2, 33) = 0, (2, 34) = -2*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 35) = -2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (2, 36) = 0, (2, 37) = -2*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 38) = -2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (2, 39) = 0, (2, 40) = 2*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 41) = 2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (2, 42) = 0, (2, 43) = -2*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 44) = -2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (2, 45) = 0, (2, 46) = 2*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 47) = 2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (2, 48) = 0, (3, 1) = 0., (3, 2) = 0., (3, 3) = -0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (3, 4) = 0., (3, 5) = 0., (3, 6) = 0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (3, 7) = 0., (3, 8) = 0., (3, 9) = -0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (3, 10) = 0., (3, 11) = 0., (3, 12) = 0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (3, 13) = 0., (3, 14) = 0., (3, 15) = 0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (3, 16) = 0., (3, 17) = 0., (3, 18) = -0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (3, 19) = 0., (3, 20) = 0., (3, 21) = 0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (3, 22) = 0., (3, 23) = 0., (3, 24) = -0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (3, 25) = 0., (3, 26) = 0., (3, 27) = 0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (3, 28) = 0., (3, 29) = 0., (3, 30) = -0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (3, 31) = 0., (3, 32) = 0., (3, 33) = 0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (3, 34) = 0., (3, 35) = 0., (3, 36) = -0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (3, 37) = 0., (3, 38) = 0., (3, 39) = -0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (3, 40) = 0., (3, 41) = 0., (3, 42) = 0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (3, 43) = 0., (3, 44) = 0., (3, 45) = -0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (3, 46) = 0., (3, 47) = 0., (3, 48) = 0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (4, 1) = -2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (4, 2) = -(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (4, 3) = 0., (4, 4) = 2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (4, 5) = (0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (4, 6) = 0., (4, 7) = -2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (4, 8) = -(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (4, 9) = 0., (4, 10) = 2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (4, 11) = (0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (4, 12) = 0., (4, 13) = 2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (4, 14) = (0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (4, 15) = 0., (4, 16) = -2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (4, 17) = -(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (4, 18) = 0., (4, 19) = 2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (4, 20) = (0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (4, 21) = 0., (4, 22) = -2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (4, 23) = -(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (4, 24) = 0., (4, 25) = 2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (4, 26) = (0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (4, 27) = 0., (4, 28) = -2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (4, 29) = -(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (4, 30) = 0., (4, 31) = 2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (4, 32) = (0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (4, 33) = 0., (4, 34) = -2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (4, 35) = -(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (4, 36) = 0., (4, 37) = -2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (4, 38) = -(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (4, 39) = 0., (4, 40) = 2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (4, 41) = (0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (4, 42) = 0., (4, 43) = -2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (4, 44) = -(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (4, 45) = 0., (4, 46) = 2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (4, 47) = (0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (4, 48) = 0., (5, 1) = -0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (5, 2) = 0., (5, 3) = -0.2e3*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (5, 4) = 0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (5, 5) = 0., (5, 6) = 0.2e3*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (5, 7) = -0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (5, 8) = 0., (5, 9) = -0.2e3*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (5, 10) = 0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (5, 11) = 0., (5, 12) = 0.2e3*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (5, 13) = 0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (5, 14) = 0., (5, 15) = 0.2e3*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (5, 16) = -0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (5, 17) = 0., (5, 18) = -0.2e3*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (5, 19) = 0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (5, 20) = 0., (5, 21) = 0.2e3*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (5, 22) = -0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (5, 23) = 0., (5, 24) = -0.2e3*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (5, 25) = 0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (5, 26) = 0., (5, 27) = 0.2e3*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (5, 28) = -0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (5, 29) = 0., (5, 30) = -0.2e3*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (5, 31) = 0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (5, 32) = 0., (5, 33) = 0.2e3*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (5, 34) = -0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (5, 35) = 0., (5, 36) = -0.2e3*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (5, 37) = -0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (5, 38) = 0., (5, 39) = -0.2e3*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (5, 40) = 0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (5, 41) = 0., (5, 42) = 0.2e3*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (5, 43) = -0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (5, 44) = 0., (5, 45) = -0.2e3*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (5, 46) = 0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (5, 47) = 0., (5, 48) = 0.2e3*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (6, 1) = 0., (6, 2) = -0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (6, 3) = -2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (6, 4) = 0., (6, 5) = 0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (6, 6) = 2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (6, 7) = 0., (6, 8) = -0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (6, 9) = -2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (6, 10) = 0., (6, 11) = 0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (6, 12) = 2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (6, 13) = 0., (6, 14) = 0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (6, 15) = 2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (6, 16) = 0., (6, 17) = -0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (6, 18) = -2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (6, 19) = 0., (6, 20) = 0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (6, 21) = 2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (6, 22) = 0., (6, 23) = -0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (6, 24) = -2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (6, 25) = 0., (6, 26) = 0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (6, 27) = 2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (6, 28) = 0., (6, 29) = -0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (6, 30) = -2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (6, 31) = 0., (6, 32) = 0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (6, 33) = 2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (6, 34) = 0., (6, 35) = -0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (6, 36) = -2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (6, 37) = 0., (6, 38) = -0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (6, 39) = -2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (6, 40) = 0., (6, 41) = 0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (6, 42) = 2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (6, 43) = 0., (6, 44) = -0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (6, 45) = -2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (6, 46) = 0., (6, 47) = 0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (6, 48) = 2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi)})).(Matrix(6, 48, {(1, 1) = -269.2307692*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)-1.153846154*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (1, 2) = -.3672806379*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (1, 3) = -5.769230769*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (1, 4) = 269.2307692*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)+1.153846154*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (1, 5) = .3672806379*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (1, 6) = 5.769230769*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (1, 7) = -269.2307692*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)-1.153846154*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (1, 8) = -.3672806379*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (1, 9) = -5.769230769*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (1, 10) = 269.2307692*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)+1.153846154*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (1, 11) = .3672806379*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (1, 12) = 5.769230769*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (1, 13) = 269.2307692*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)+1.153846154*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (1, 14) = .3672806379*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (1, 15) = 5.769230769*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (1, 16) = -269.2307692*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)-1.153846154*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (1, 17) = -.3672806379*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (1, 18) = -5.769230769*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (1, 19) = 269.2307692*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)+1.153846154*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (1, 20) = .3672806379*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (1, 21) = 5.769230769*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (1, 22) = -269.2307692*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)-1.153846154*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (1, 23) = -.3672806379*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (1, 24) = -5.769230769*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (1, 25) = 269.2307692*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)+1.153846154*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (1, 26) = .3672806379*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (1, 27) = 5.769230769*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (1, 28) = -269.2307692*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)-1.153846154*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (1, 29) = -.3672806379*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (1, 30) = -5.769230769*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (1, 31) = 269.2307692*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)+1.153846154*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (1, 32) = .3672806379*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (1, 33) = 5.769230769*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (1, 34) = -269.2307692*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)-1.153846154*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (1, 35) = -.3672806379*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (1, 36) = -5.769230769*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (1, 37) = -269.2307692*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)-1.153846154*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (1, 38) = -.3672806379*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (1, 39) = -5.769230769*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (1, 40) = 269.2307692*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)+1.153846154*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (1, 41) = .3672806379*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (1, 42) = 5.769230769*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (1, 43) = -269.2307692*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)-1.153846154*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (1, 44) = -.3672806379*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (1, 45) = -5.769230769*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (1, 46) = 269.2307692*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)+1.153846154*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (1, 47) = .3672806379*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (1, 48) = 5.769230769*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (2, 1) = -115.3846154*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)-2.692307692*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 2) = -.8569881549*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 3) = -5.769230769*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (2, 4) = 115.3846154*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)+2.692307692*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 5) = .8569881549*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 6) = 5.769230769*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (2, 7) = -115.3846154*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)-2.692307692*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 8) = -.8569881549*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 9) = -5.769230769*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (2, 10) = 115.3846154*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)+2.692307692*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 11) = .8569881549*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 12) = 5.769230769*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (2, 13) = 115.3846154*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)+2.692307692*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 14) = .8569881549*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 15) = 5.769230769*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (2, 16) = -115.3846154*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)-2.692307692*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 17) = -.8569881549*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 18) = -5.769230769*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (2, 19) = 115.3846154*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)+2.692307692*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 20) = .8569881549*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 21) = 5.769230769*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (2, 22) = -115.3846154*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)-2.692307692*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 23) = -.8569881549*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 24) = -5.769230769*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (2, 25) = 115.3846154*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)+2.692307692*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 26) = .8569881549*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 27) = 5.769230769*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (2, 28) = -115.3846154*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)-2.692307692*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 29) = -.8569881549*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 30) = -5.769230769*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (2, 31) = 115.3846154*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)+2.692307692*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 32) = .8569881549*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 33) = 5.769230769*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (2, 34) = -115.3846154*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)-2.692307692*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 35) = -.8569881549*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 36) = -5.769230769*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (2, 37) = -115.3846154*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)-2.692307692*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 38) = -.8569881549*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 39) = -5.769230769*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (2, 40) = 115.3846154*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)+2.692307692*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 41) = .8569881549*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 42) = 5.769230769*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (2, 43) = -115.3846154*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)-2.692307692*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 44) = -.8569881549*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 45) = -5.769230769*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (2, 46) = 115.3846154*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)+2.692307692*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 47) = .8569881549*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 48) = 5.769230769*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (3, 1) = -115.3846154*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)-1.153846154*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (3, 2) = -.3672806379*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (3, 3) = -13.46153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (3, 4) = 115.3846154*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)+1.153846154*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (3, 5) = .3672806379*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (3, 6) = 13.46153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (3, 7) = -115.3846154*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)-1.153846154*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (3, 8) = -.3672806379*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (3, 9) = -13.46153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (3, 10) = 115.3846154*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)+1.153846154*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (3, 11) = .3672806379*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (3, 12) = 13.46153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (3, 13) = 115.3846154*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)+1.153846154*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (3, 14) = .3672806379*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (3, 15) = 13.46153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (3, 16) = -115.3846154*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)-1.153846154*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (3, 17) = -.3672806379*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (3, 18) = -13.46153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (3, 19) = 115.3846154*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)+1.153846154*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (3, 20) = .3672806379*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (3, 21) = 13.46153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (3, 22) = -115.3846154*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)-1.153846154*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (3, 23) = -.3672806379*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (3, 24) = -13.46153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (3, 25) = 115.3846154*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)+1.153846154*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (3, 26) = .3672806379*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (3, 27) = 13.46153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (3, 28) = -115.3846154*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)-1.153846154*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (3, 29) = -.3672806379*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (3, 30) = -13.46153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (3, 31) = 115.3846154*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)+1.153846154*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (3, 32) = .3672806379*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (3, 33) = 13.46153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (3, 34) = -115.3846154*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)-1.153846154*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (3, 35) = -.3672806379*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (3, 36) = -13.46153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (3, 37) = -115.3846154*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)-1.153846154*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (3, 38) = -.3672806379*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (3, 39) = -13.46153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (3, 40) = 115.3846154*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)+1.153846154*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (3, 41) = .3672806379*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (3, 42) = 13.46153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (3, 43) = -115.3846154*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)-1.153846154*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (3, 44) = -.3672806379*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (3, 45) = -13.46153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (3, 46) = 115.3846154*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)+1.153846154*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (3, 47) = .3672806379*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (3, 48) = 13.46153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (4, 1) = -.2448537586*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (4, 2) = -.3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (4, 3) = 0., (4, 4) = .2448537586*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (4, 5) = .3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (4, 6) = 0., (4, 7) = -.2448537586*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (4, 8) = -.3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (4, 9) = 0., (4, 10) = .2448537586*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (4, 11) = .3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (4, 12) = 0., (4, 13) = .2448537586*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (4, 14) = .3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (4, 15) = 0., (4, 16) = -.2448537586*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (4, 17) = -.3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (4, 18) = 0., (4, 19) = .2448537586*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (4, 20) = .3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (4, 21) = 0., (4, 22) = -.2448537586*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (4, 23) = -.3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (4, 24) = 0., (4, 25) = .2448537586*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (4, 26) = .3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (4, 27) = 0., (4, 28) = -.2448537586*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (4, 29) = -.3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (4, 30) = 0., (4, 31) = .2448537586*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (4, 32) = .3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (4, 33) = 0., (4, 34) = -.2448537586*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (4, 35) = -.3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (4, 36) = 0., (4, 37) = -.2448537586*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (4, 38) = -.3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (4, 39) = 0., (4, 40) = .2448537586*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (4, 41) = .3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (4, 42) = 0., (4, 43) = -.2448537586*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (4, 44) = -.3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (4, 45) = 0., (4, 46) = .2448537586*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (4, 47) = .3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (4, 48) = 0., (5, 1) = -3.846153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (5, 2) = 0., (5, 3) = -76.92307692*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (5, 4) = 3.846153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (5, 5) = 0., (5, 6) = 76.92307692*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (5, 7) = -3.846153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (5, 8) = 0., (5, 9) = -76.92307692*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (5, 10) = 3.846153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (5, 11) = 0., (5, 12) = 76.92307692*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (5, 13) = 3.846153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (5, 14) = 0., (5, 15) = 76.92307692*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (5, 16) = -3.846153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (5, 17) = 0., (5, 18) = -76.92307692*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (5, 19) = 3.846153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (5, 20) = 0., (5, 21) = 76.92307692*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (5, 22) = -3.846153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (5, 23) = 0., (5, 24) = -76.92307692*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (5, 25) = 3.846153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (5, 26) = 0., (5, 27) = 76.92307692*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (5, 28) = -3.846153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (5, 29) = 0., (5, 30) = -76.92307692*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (5, 31) = 3.846153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (5, 32) = 0., (5, 33) = 76.92307692*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (5, 34) = -3.846153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (5, 35) = 0., (5, 36) = -76.92307692*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (5, 37) = -3.846153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (5, 38) = 0., (5, 39) = -76.92307692*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (5, 40) = 3.846153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (5, 41) = 0., (5, 42) = 76.92307692*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (5, 43) = -3.846153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (5, 44) = 0., (5, 45) = -76.92307692*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (5, 46) = 3.846153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (5, 47) = 0., (5, 48) = 76.92307692*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (6, 1) = 0., (6, 2) = -3.846153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (6, 3) = -.2448537586*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (6, 4) = 0., (6, 5) = 3.846153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (6, 6) = .2448537586*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (6, 7) = 0., (6, 8) = -3.846153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (6, 9) = -.2448537586*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (6, 10) = 0., (6, 11) = 3.846153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (6, 12) = .2448537586*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (6, 13) = 0., (6, 14) = 3.846153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (6, 15) = .2448537586*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (6, 16) = 0., (6, 17) = -3.846153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (6, 18) = -.2448537586*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (6, 19) = 0., (6, 20) = 3.846153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (6, 21) = .2448537586*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (6, 22) = 0., (6, 23) = -3.846153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (6, 24) = -.2448537586*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (6, 25) = 0., (6, 26) = 3.846153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (6, 27) = .2448537586*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (6, 28) = 0., (6, 29) = -3.846153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (6, 30) = -.2448537586*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (6, 31) = 0., (6, 32) = 3.846153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (6, 33) = .2448537586*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (6, 34) = 0., (6, 35) = -3.846153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (6, 36) = -.2448537586*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (6, 37) = 0., (6, 38) = -3.846153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (6, 39) = -.2448537586*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (6, 40) = 0., (6, 41) = 3.846153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (6, 42) = .2448537586*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (6, 43) = 0., (6, 44) = -3.846153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (6, 45) = -.2448537586*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (6, 46) = 0., (6, 47) = 3.846153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (6, 48) = .2448537586*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11)}))

(8)

S := (1/4)*a*Pi*L*(a*y+b)*T

Typesetting[delayDotProduct](0.7853981635e-3*(0.1e-1*y+.11), Transpose(Matrix(6, 48, {(1, 1) = -0.2e3*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (1, 2) = 0., (1, 3) = 0., (1, 4) = 0.2e3*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (1, 5) = 0., (1, 6) = 0., (1, 7) = -0.2e3*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (1, 8) = 0., (1, 9) = 0., (1, 10) = 0.2e3*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (1, 11) = 0., (1, 12) = 0., (1, 13) = 0.2e3*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (1, 14) = 0., (1, 15) = 0., (1, 16) = -0.2e3*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (1, 17) = 0., (1, 18) = 0., (1, 19) = 0.2e3*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (1, 20) = 0., (1, 21) = 0., (1, 22) = -0.2e3*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (1, 23) = 0., (1, 24) = 0., (1, 25) = 0.2e3*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (1, 26) = 0., (1, 27) = 0., (1, 28) = -0.2e3*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (1, 29) = 0., (1, 30) = 0., (1, 31) = 0.2e3*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (1, 32) = 0., (1, 33) = 0., (1, 34) = -0.2e3*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (1, 35) = 0., (1, 36) = 0., (1, 37) = -0.2e3*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (1, 38) = 0., (1, 39) = 0., (1, 40) = 0.2e3*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (1, 41) = 0., (1, 42) = 0., (1, 43) = -0.2e3*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (1, 44) = 0., (1, 45) = 0., (1, 46) = 0.2e3*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (1, 47) = 0., (1, 48) = 0., (2, 1) = -2*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 2) = -2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (2, 3) = 0, (2, 4) = 2*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 5) = 2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (2, 6) = 0, (2, 7) = -2*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 8) = -2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (2, 9) = 0, (2, 10) = 2*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 11) = 2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (2, 12) = 0, (2, 13) = 2*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 14) = 2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (2, 15) = 0, (2, 16) = -2*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 17) = -2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (2, 18) = 0, (2, 19) = 2*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 20) = 2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (2, 21) = 0, (2, 22) = -2*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 23) = -2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (2, 24) = 0, (2, 25) = 2*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 26) = 2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (2, 27) = 0, (2, 28) = -2*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 29) = -2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (2, 30) = 0, (2, 31) = 2*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 32) = 2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (2, 33) = 0, (2, 34) = -2*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 35) = -2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (2, 36) = 0, (2, 37) = -2*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 38) = -2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (2, 39) = 0, (2, 40) = 2*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 41) = 2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (2, 42) = 0, (2, 43) = -2*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 44) = -2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (2, 45) = 0, (2, 46) = 2*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 47) = 2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (2, 48) = 0, (3, 1) = 0., (3, 2) = 0., (3, 3) = -0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (3, 4) = 0., (3, 5) = 0., (3, 6) = 0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (3, 7) = 0., (3, 8) = 0., (3, 9) = -0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (3, 10) = 0., (3, 11) = 0., (3, 12) = 0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (3, 13) = 0., (3, 14) = 0., (3, 15) = 0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (3, 16) = 0., (3, 17) = 0., (3, 18) = -0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (3, 19) = 0., (3, 20) = 0., (3, 21) = 0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (3, 22) = 0., (3, 23) = 0., (3, 24) = -0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (3, 25) = 0., (3, 26) = 0., (3, 27) = 0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (3, 28) = 0., (3, 29) = 0., (3, 30) = -0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (3, 31) = 0., (3, 32) = 0., (3, 33) = 0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (3, 34) = 0., (3, 35) = 0., (3, 36) = -0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (3, 37) = 0., (3, 38) = 0., (3, 39) = -0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (3, 40) = 0., (3, 41) = 0., (3, 42) = 0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (3, 43) = 0., (3, 44) = 0., (3, 45) = -0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (3, 46) = 0., (3, 47) = 0., (3, 48) = 0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (4, 1) = -2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (4, 2) = -(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (4, 3) = 0., (4, 4) = 2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (4, 5) = (0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (4, 6) = 0., (4, 7) = -2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (4, 8) = -(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (4, 9) = 0., (4, 10) = 2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (4, 11) = (0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (4, 12) = 0., (4, 13) = 2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (4, 14) = (0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (4, 15) = 0., (4, 16) = -2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (4, 17) = -(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (4, 18) = 0., (4, 19) = 2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (4, 20) = (0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (4, 21) = 0., (4, 22) = -2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (4, 23) = -(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (4, 24) = 0., (4, 25) = 2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (4, 26) = (0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (4, 27) = 0., (4, 28) = -2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (4, 29) = -(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (4, 30) = 0., (4, 31) = 2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (4, 32) = (0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (4, 33) = 0., (4, 34) = -2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (4, 35) = -(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (4, 36) = 0., (4, 37) = -2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (4, 38) = -(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (4, 39) = 0., (4, 40) = 2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (4, 41) = (0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (4, 42) = 0., (4, 43) = -2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (4, 44) = -(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (4, 45) = 0., (4, 46) = 2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (4, 47) = (0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (4, 48) = 0., (5, 1) = -0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (5, 2) = 0., (5, 3) = -0.2e3*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (5, 4) = 0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (5, 5) = 0., (5, 6) = 0.2e3*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (5, 7) = -0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (5, 8) = 0., (5, 9) = -0.2e3*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (5, 10) = 0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (5, 11) = 0., (5, 12) = 0.2e3*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (5, 13) = 0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (5, 14) = 0., (5, 15) = 0.2e3*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (5, 16) = -0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (5, 17) = 0., (5, 18) = -0.2e3*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (5, 19) = 0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (5, 20) = 0., (5, 21) = 0.2e3*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (5, 22) = -0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (5, 23) = 0., (5, 24) = -0.2e3*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (5, 25) = 0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (5, 26) = 0., (5, 27) = 0.2e3*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (5, 28) = -0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (5, 29) = 0., (5, 30) = -0.2e3*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (5, 31) = 0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (5, 32) = 0., (5, 33) = 0.2e3*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (5, 34) = -0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (5, 35) = 0., (5, 36) = -0.2e3*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (5, 37) = -0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (5, 38) = 0., (5, 39) = -0.2e3*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (5, 40) = 0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (5, 41) = 0., (5, 42) = 0.2e3*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (5, 43) = -0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (5, 44) = 0., (5, 45) = -0.2e3*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (5, 46) = 0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (5, 47) = 0., (5, 48) = 0.2e3*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (6, 1) = 0., (6, 2) = -0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (6, 3) = -2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (6, 4) = 0., (6, 5) = 0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (6, 6) = 2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (6, 7) = 0., (6, 8) = -0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (6, 9) = -2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (6, 10) = 0., (6, 11) = 0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (6, 12) = 2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (6, 13) = 0., (6, 14) = 0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (6, 15) = 2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (6, 16) = 0., (6, 17) = -0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (6, 18) = -2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (6, 19) = 0., (6, 20) = 0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (6, 21) = 2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (6, 22) = 0., (6, 23) = -0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (6, 24) = -2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (6, 25) = 0., (6, 26) = 0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (6, 27) = 2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (6, 28) = 0., (6, 29) = -0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (6, 30) = -2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (6, 31) = 0., (6, 32) = 0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (6, 33) = 2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (6, 34) = 0., (6, 35) = -0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (6, 36) = -2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (6, 37) = 0., (6, 38) = -0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (6, 39) = -2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (6, 40) = 0., (6, 41) = 0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (6, 42) = 2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (6, 43) = 0., (6, 44) = -0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (6, 45) = -2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (6, 46) = 0., (6, 47) = 0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (6, 48) = 2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi)})).(Matrix(6, 48, {(1, 1) = -269.2307692*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)-1.153846154*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (1, 2) = -.3672806379*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (1, 3) = -5.769230769*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (1, 4) = 269.2307692*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)+1.153846154*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (1, 5) = .3672806379*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (1, 6) = 5.769230769*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (1, 7) = -269.2307692*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)-1.153846154*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (1, 8) = -.3672806379*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (1, 9) = -5.769230769*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (1, 10) = 269.2307692*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)+1.153846154*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (1, 11) = .3672806379*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (1, 12) = 5.769230769*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (1, 13) = 269.2307692*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)+1.153846154*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (1, 14) = .3672806379*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (1, 15) = 5.769230769*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (1, 16) = -269.2307692*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)-1.153846154*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (1, 17) = -.3672806379*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (1, 18) = -5.769230769*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (1, 19) = 269.2307692*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)+1.153846154*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (1, 20) = .3672806379*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (1, 21) = 5.769230769*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (1, 22) = -269.2307692*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)-1.153846154*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (1, 23) = -.3672806379*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (1, 24) = -5.769230769*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (1, 25) = 269.2307692*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)+1.153846154*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (1, 26) = .3672806379*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (1, 27) = 5.769230769*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (1, 28) = -269.2307692*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)-1.153846154*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (1, 29) = -.3672806379*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (1, 30) = -5.769230769*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (1, 31) = 269.2307692*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)+1.153846154*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (1, 32) = .3672806379*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (1, 33) = 5.769230769*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (1, 34) = -269.2307692*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)-1.153846154*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (1, 35) = -.3672806379*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (1, 36) = -5.769230769*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (1, 37) = -269.2307692*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)-1.153846154*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (1, 38) = -.3672806379*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (1, 39) = -5.769230769*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (1, 40) = 269.2307692*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)+1.153846154*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (1, 41) = .3672806379*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (1, 42) = 5.769230769*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (1, 43) = -269.2307692*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)-1.153846154*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (1, 44) = -.3672806379*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (1, 45) = -5.769230769*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (1, 46) = 269.2307692*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)+1.153846154*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (1, 47) = .3672806379*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (1, 48) = 5.769230769*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (2, 1) = -115.3846154*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)-2.692307692*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 2) = -.8569881549*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 3) = -5.769230769*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (2, 4) = 115.3846154*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)+2.692307692*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 5) = .8569881549*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 6) = 5.769230769*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (2, 7) = -115.3846154*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)-2.692307692*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 8) = -.8569881549*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 9) = -5.769230769*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (2, 10) = 115.3846154*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)+2.692307692*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 11) = .8569881549*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 12) = 5.769230769*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (2, 13) = 115.3846154*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)+2.692307692*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 14) = .8569881549*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 15) = 5.769230769*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (2, 16) = -115.3846154*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)-2.692307692*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 17) = -.8569881549*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 18) = -5.769230769*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (2, 19) = 115.3846154*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)+2.692307692*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 20) = .8569881549*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 21) = 5.769230769*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (2, 22) = -115.3846154*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)-2.692307692*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 23) = -.8569881549*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 24) = -5.769230769*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (2, 25) = 115.3846154*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)+2.692307692*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 26) = .8569881549*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 27) = 5.769230769*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (2, 28) = -115.3846154*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)-2.692307692*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 29) = -.8569881549*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 30) = -5.769230769*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (2, 31) = 115.3846154*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)+2.692307692*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 32) = .8569881549*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 33) = 5.769230769*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (2, 34) = -115.3846154*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)-2.692307692*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 35) = -.8569881549*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 36) = -5.769230769*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (2, 37) = -115.3846154*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)-2.692307692*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 38) = -.8569881549*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 39) = -5.769230769*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (2, 40) = 115.3846154*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)+2.692307692*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 41) = .8569881549*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 42) = 5.769230769*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (2, 43) = -115.3846154*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)-2.692307692*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 44) = -.8569881549*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 45) = -5.769230769*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (2, 46) = 115.3846154*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)+2.692307692*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 47) = .8569881549*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 48) = 5.769230769*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (3, 1) = -115.3846154*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)-1.153846154*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (3, 2) = -.3672806379*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (3, 3) = -13.46153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (3, 4) = 115.3846154*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)+1.153846154*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (3, 5) = .3672806379*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (3, 6) = 13.46153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (3, 7) = -115.3846154*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)-1.153846154*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (3, 8) = -.3672806379*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (3, 9) = -13.46153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (3, 10) = 115.3846154*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)+1.153846154*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (3, 11) = .3672806379*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (3, 12) = 13.46153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (3, 13) = 115.3846154*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)+1.153846154*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (3, 14) = .3672806379*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (3, 15) = 13.46153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (3, 16) = -115.3846154*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)-1.153846154*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (3, 17) = -.3672806379*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (3, 18) = -13.46153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (3, 19) = 115.3846154*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)+1.153846154*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (3, 20) = .3672806379*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (3, 21) = 13.46153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (3, 22) = -115.3846154*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)-1.153846154*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (3, 23) = -.3672806379*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (3, 24) = -13.46153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (3, 25) = 115.3846154*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)+1.153846154*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (3, 26) = .3672806379*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (3, 27) = 13.46153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (3, 28) = -115.3846154*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)-1.153846154*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (3, 29) = -.3672806379*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (3, 30) = -13.46153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (3, 31) = 115.3846154*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)+1.153846154*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (3, 32) = .3672806379*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (3, 33) = 13.46153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (3, 34) = -115.3846154*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)-1.153846154*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (3, 35) = -.3672806379*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (3, 36) = -13.46153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (3, 37) = -115.3846154*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)-1.153846154*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (3, 38) = -.3672806379*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (3, 39) = -13.46153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (3, 40) = 115.3846154*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)+1.153846154*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (3, 41) = .3672806379*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (3, 42) = 13.46153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (3, 43) = -115.3846154*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)-1.153846154*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (3, 44) = -.3672806379*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (3, 45) = -13.46153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (3, 46) = 115.3846154*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)+1.153846154*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (3, 47) = .3672806379*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (3, 48) = 13.46153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (4, 1) = -.2448537586*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (4, 2) = -.3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (4, 3) = 0., (4, 4) = .2448537586*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (4, 5) = .3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (4, 6) = 0., (4, 7) = -.2448537586*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (4, 8) = -.3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (4, 9) = 0., (4, 10) = .2448537586*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (4, 11) = .3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (4, 12) = 0., (4, 13) = .2448537586*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (4, 14) = .3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (4, 15) = 0., (4, 16) = -.2448537586*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (4, 17) = -.3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (4, 18) = 0., (4, 19) = .2448537586*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (4, 20) = .3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (4, 21) = 0., (4, 22) = -.2448537586*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (4, 23) = -.3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (4, 24) = 0., (4, 25) = .2448537586*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (4, 26) = .3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (4, 27) = 0., (4, 28) = -.2448537586*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (4, 29) = -.3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (4, 30) = 0., (4, 31) = .2448537586*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (4, 32) = .3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (4, 33) = 0., (4, 34) = -.2448537586*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (4, 35) = -.3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (4, 36) = 0., (4, 37) = -.2448537586*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (4, 38) = -.3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (4, 39) = 0., (4, 40) = .2448537586*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (4, 41) = .3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (4, 42) = 0., (4, 43) = -.2448537586*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (4, 44) = -.3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (4, 45) = 0., (4, 46) = .2448537586*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (4, 47) = .3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (4, 48) = 0., (5, 1) = -3.846153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (5, 2) = 0., (5, 3) = -76.92307692*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (5, 4) = 3.846153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (5, 5) = 0., (5, 6) = 76.92307692*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (5, 7) = -3.846153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (5, 8) = 0., (5, 9) = -76.92307692*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (5, 10) = 3.846153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (5, 11) = 0., (5, 12) = 76.92307692*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (5, 13) = 3.846153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (5, 14) = 0., (5, 15) = 76.92307692*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (5, 16) = -3.846153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (5, 17) = 0., (5, 18) = -76.92307692*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (5, 19) = 3.846153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (5, 20) = 0., (5, 21) = 76.92307692*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (5, 22) = -3.846153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (5, 23) = 0., (5, 24) = -76.92307692*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (5, 25) = 3.846153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (5, 26) = 0., (5, 27) = 76.92307692*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (5, 28) = -3.846153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (5, 29) = 0., (5, 30) = -76.92307692*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (5, 31) = 3.846153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (5, 32) = 0., (5, 33) = 76.92307692*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (5, 34) = -3.846153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (5, 35) = 0., (5, 36) = -76.92307692*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (5, 37) = -3.846153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (5, 38) = 0., (5, 39) = -76.92307692*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (5, 40) = 3.846153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (5, 41) = 0., (5, 42) = 76.92307692*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (5, 43) = -3.846153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (5, 44) = 0., (5, 45) = -76.92307692*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (5, 46) = 3.846153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (5, 47) = 0., (5, 48) = 76.92307692*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (6, 1) = 0., (6, 2) = -3.846153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (6, 3) = -.2448537586*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (6, 4) = 0., (6, 5) = 3.846153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (6, 6) = .2448537586*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (6, 7) = 0., (6, 8) = -3.846153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (6, 9) = -.2448537586*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (6, 10) = 0., (6, 11) = 3.846153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (6, 12) = .2448537586*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (6, 13) = 0., (6, 14) = 3.846153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (6, 15) = .2448537586*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (6, 16) = 0., (6, 17) = -3.846153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (6, 18) = -.2448537586*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (6, 19) = 0., (6, 20) = 3.846153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (6, 21) = .2448537586*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (6, 22) = 0., (6, 23) = -3.846153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (6, 24) = -.2448537586*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (6, 25) = 0., (6, 26) = 3.846153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (6, 27) = .2448537586*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (6, 28) = 0., (6, 29) = -3.846153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (6, 30) = -.2448537586*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (6, 31) = 0., (6, 32) = 3.846153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (6, 33) = .2448537586*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (6, 34) = 0., (6, 35) = -3.846153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (6, 36) = -.2448537586*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (6, 37) = 0., (6, 38) = -3.846153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (6, 39) = -.2448537586*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (6, 40) = 0., (6, 41) = 3.846153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (6, 42) = .2448537586*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (6, 43) = 0., (6, 44) = -3.846153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (6, 45) = -.2448537586*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (6, 46) = 0., (6, 47) = 3.846153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (6, 48) = .2448537586*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11)})), true)

(9)

int(int(int(S, z = -1 .. 1), y = -1 .. 1), x = -1 .. 1)

Warning,  computation interrupted

 

NULL

 

Download maple2.mw

Let A and B two real closed intervals.
I define b(x) as B+x for any real x ; more precisely, if B=[B1, B2], b(x) = [B1+x, B2+x]

I want to build a function f(x) such that :

  1. if  A and b(x) do not overlap then f(x) = 0
  2. otherwise f(x) is some expression of the covering length


For example : if A=[0, 2] and B=[-2,-1], then

  1. f(x) = 0 if  -1+x < 0 or -2+x > 2
  2. otherwise f(x) = L   where L is the measure of the intersection of A and b(x)


I coded a few variants using piecewise or Heaviside functions. 
In some sense I have already answered my own question ... but no one is neither elegant nor concise.

I wonder if there exist a Maple function that returns the measure of the intersection of two real intervals (when they overlap) and 0 otherwise ?

 

First 1135 1136 1137 1138 1139 1140 1141 Last Page 1137 of 2434