Rouben Rostamian

MaplePrimes Activity


These are answers submitted by Rouben Rostamian

This looks like a homework problem.  Here I will provide most of the solution but in the future please show some evidence of what you can do on your own before appealing for help.

restart;

The general  system of two autonomous differential equations has the form
"w ' = A(w,f)"
"f ' = B(w,f)"
where a prime indicates derivative with respect to x.  In your case your have

A := (w,f) -> f;
B := (w,f) -> a*w + b*w^2 + c*w^3;

proc (w, f) options operator, arrow; f end proc

proc (w, f) options operator, arrow; a*w+b*w^2+c*w^3 end proc

and therefore your equations are

de1 := diff(w(x),x) = A(w(x),f(x));

diff(w(x), x) = f(x)

de2 := diff(f(x),x) = B(w(x),f(x));

diff(f(x), x) = a*w(x)+b*w(x)^2+c*w(x)^3

The system's equilibra are obtained by solving A(w, f) = 0, B(w, f) = 0:

equilib := solve({A(w,f)=0, B(w,f)=0}, {w,f}, explicit);

{f = 0, w = 0}, {f = 0, w = (1/2)*(-b+(-4*a*c+b^2)^(1/2))/c}, {f = 0, w = -(1/2)*(b+(-4*a*c+b^2)^(1/2))/c}

Linearize the system about each of the equilibria.  I do it here for one, you do the others.

 

The Jacobian matrix is

J := < diff(A(w,f),w),  diff(A(w,f),f);
       diff(B(w,f),w),  diff(B(w,f),f) >;

Matrix(2, 2, {(1, 1) = 0, (1, 2) = 1, (2, 1) = 3*c*w^2+2*b*w+a, (2, 2) = 0})

Evaluate the Jacobian at equilib[3]:

J2 := simplify(eval(J, equilib[3]));

Matrix(2, 2, {(1, 1) = 0, (1, 2) = 1, (2, 1) = (1/2)*(b*sqrt(-4*a*c+b^2)-4*a*c+b^2)/c, (2, 2) = 0})

Here are the eigenvalues at equilib[3]:

eigs := LinearAlgebra:-Eigenvalues(J2);

Vector(2, {(1) = (1/2)*sqrt(2)*sqrt(c*(b*sqrt(-4*a*c+b^2)-4*a*c+b^2))/c, (2) = -(1/2)*sqrt(2)*sqrt(c*(b*sqrt(-4*a*c+b^2)-4*a*c+b^2))/c})

params :=
    a = (r+1)*(1+p1*s)/(2*(1-p1))-1/(n^2),
    b = (r+1)*(3-r)*(1-p1*s^2)/(8*(1-p1))-3/(2*n^4),
    c = (r+1)*(3-r)*(5-3*r)*(1+p1*s^3)/(48*(1-p1))-5/(2*n^6),
    r=-0.8, p1=0.5, s=0.6, n=1.6;

a = (r+1)*(p1*s+1)/(2-2*p1)-1/n^2, b = (r+1)*(3-r)*(-p1*s^2+1)/(8-8*p1)-(3/2)/n^4, c = (r+1)*(3-r)*(5-3*r)*(p1*s^3+1)/(48-48*p1)-(5/2)/n^6, r = -.8, p1 = .5, s = .6, n = 1.6

evalf(subs(params, eigs));

Vector(2, {(1) = .4498767329, (2) = -.4498767329})

One eigenvalue is positive, the other is negative, therefore equlib[3] is a saddle.

 

Now let's do the phase portrait

ic := seq([w(0)=h, f(0)=0], h=-2..2, 0.2),
      seq([w(0)=0, f(0)=h], h=0.5..1, 0.1),
      seq([w(0)=0, f(0)=h], h=-1..0.5, 0.1):

subs(params, {de1, de2}):
DEtools:-DEplot(%, [w(x),f(x)], x=-10..10, [ic],
    w=-2..2, f=-1..1, linecolor=black, thickness=1,
    stepsize=0.1, arrows=none);

 

Download mw.mw

 

 

restart;

de := diff(a3(z), z) = -K*a10*a20*sqrt(1-a3(z)^2/a10^2)*sqrt(1-a3(z)^2/a20^2);

diff(a3(z), z) = -K*a10*a20*(1-a3(z)^2/a10^2)^(1/2)*(1-a3(z)^2/a20^2)^(1/2)

ic := a3(0) = 0;

a3(0) = 0

Arbitrary choice of parameters

params := a10=1.23, a20=2.34, K=4.23;

a10 = 1.23, a20 = 2.34, K = 4.23

Numeric soluition

eval({de,ic}, {params});
dsol := dsolve(%, numeric, range=0..1);

{a3(0) = 0, diff(a3(z), z) = -12.174786*(1-.6609822196*a3(z)^2)^(1/2)*(1-.1826283878*a3(z)^2)^(1/2)}

proc (x_rkf45) local _res, _dat, _vars, _solnproc, _xout, _ndsol, _pars, _n, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if 1 < nargs then error "invalid input: too many arguments" end if; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then _xout := evalf[_EnvDSNumericSaveDigits](x_rkf45) else _xout := evalf(x_rkf45) end if; _dat := Array(1..4, {(1) = proc (_xin) local _xout, _dtbl, _dat, _vmap, _x0, _y0, _val, _dig, _n, _ne, _nd, _nv, _pars, _ini, _par, _i, _j, _k, _src; option `Copyright (c) 2002 by Waterloo Maple Inc. All rights reserved.`; table( [( "left" ) = 0., ( "right" ) = 1., ( "complex" ) = false ] ) _xout := _xin; _pars := []; _dtbl := array( 1 .. 4, [( 1 ) = (array( 1 .. 26, [( 1 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 2 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 3 ) = ([0, 0, 0, Array(1..0, 1..2, {}, datatype = float[8], order = C_order)]), ( 4 ) = (Array(1..63, {(1) = 1, (2) = 1, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 1, (8) = 0, (9) = 0, (10) = 1, (11) = 0, (12) = 0, (13) = 0, (14) = 0, (15) = 0, (16) = 0, (17) = 0, (18) = 1, (19) = 30000, (20) = 0, (21) = 0, (22) = 1, (23) = 4, (24) = 0, (25) = 1, (26) = 15, (27) = 1, (28) = 0, (29) = 1, (30) = 3, (31) = 3, (32) = 0, (33) = 1, (34) = 0, (35) = 0, (36) = 0, (37) = 0, (38) = 0, (39) = 0, (40) = 0, (41) = 0, (42) = 0, (43) = 1, (44) = 0, (45) = 0, (46) = 0, (47) = 0, (48) = 0, (49) = 0, (50) = 50, (51) = 1, (52) = 0, (53) = 0, (54) = 0, (55) = 0, (56) = 0, (57) = 0, (58) = 0, (59) = 10000, (60) = 0, (61) = 1000, (62) = 0, (63) = 0}, datatype = integer[8])), ( 5 ) = (Array(1..28, {(1) = 1.0, (2) = 0.10e-5, (3) = .0, (4) = 0.500001e-14, (5) = .0, (6) = 0.41459938234984545e-3, (7) = .0, (8) = 0.10e-5, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = 1.0, (14) = .0, (15) = .49999999999999, (16) = .0, (17) = 1.0, (18) = 1.0, (19) = .0, (20) = .0, (21) = 1.0, (22) = 1.0, (23) = .0, (24) = .0, (25) = 0.10e-14, (26) = .0, (27) = .0, (28) = .0}, datatype = float[8], order = C_order)), ( 6 ) = (Array(1..1, {(1) = .0}, datatype = float[8], order = C_order)), ( 7 ) = ([Array(1..4, 1..7, {(1, 1) = .0, (1, 2) = .203125, (1, 3) = .3046875, (1, 4) = .75, (1, 5) = .8125, (1, 6) = .40625, (1, 7) = .8125, (2, 1) = 0.6378173828125e-1, (2, 2) = .0, (2, 3) = .279296875, (2, 4) = .27237892150878906, (2, 5) = -0.9686851501464844e-1, (2, 6) = 0.1956939697265625e-1, (2, 7) = .5381584167480469, (3, 1) = 0.31890869140625e-1, (3, 2) = .0, (3, 3) = -.34375, (3, 4) = -.335235595703125, (3, 5) = .2296142578125, (3, 6) = .41748046875, (3, 7) = 11.480712890625, (4, 1) = 0.9710520505905151e-1, (4, 2) = .0, (4, 3) = .40350341796875, (4, 4) = 0.20297467708587646e-1, (4, 5) = -0.6054282188415527e-2, (4, 6) = -0.4770040512084961e-1, (4, 7) = .77858567237854}, datatype = float[8], order = C_order), Array(1..6, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = 1.0, (2, 1) = .25, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = 1.0, (3, 1) = .1875, (3, 2) = .5625, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = 2.0, (4, 1) = .23583984375, (4, 2) = -.87890625, (4, 3) = .890625, (4, 4) = .0, (4, 5) = .0, (4, 6) = .2681884765625, (5, 1) = .1272735595703125, (5, 2) = -.5009765625, (5, 3) = .44921875, (5, 4) = -0.128936767578125e-1, (5, 5) = .0, (5, 6) = 0.626220703125e-1, (6, 1) = -0.927734375e-1, (6, 2) = .626220703125, (6, 3) = -.4326171875, (6, 4) = .1418304443359375, (6, 5) = -0.861053466796875e-1, (6, 6) = .3131103515625}, datatype = float[8], order = C_order), Array(1..6, {(1) = .0, (2) = .386, (3) = .21, (4) = .63, (5) = 1.0, (6) = 1.0}, datatype = float[8], order = C_order), Array(1..6, {(1) = .25, (2) = -.1043, (3) = .1035, (4) = -0.362e-1, (5) = .0, (6) = .0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 1.544, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = .9466785280815533, (3, 2) = .25570116989825814, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = 3.3148251870684886, (4, 2) = 2.896124015972123, (4, 3) = .9986419139977808, (4, 4) = .0, (4, 5) = .0, (5, 1) = 1.2212245092262748, (5, 2) = 6.019134481287752, (5, 3) = 12.537083329320874, (5, 4) = -.687886036105895, (5, 5) = .0, (6, 1) = 1.2212245092262748, (6, 2) = 6.019134481287752, (6, 3) = 12.537083329320874, (6, 4) = -.687886036105895, (6, 5) = 1.0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = -5.6688, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = -2.4300933568337584, (3, 2) = -.20635991570891224, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = -.10735290581452621, (4, 2) = -9.594562251021896, (4, 3) = -20.470286148096154, (4, 4) = .0, (4, 5) = .0, (5, 1) = 7.496443313968615, (5, 2) = -10.246804314641219, (5, 3) = -33.99990352819906, (5, 4) = 11.708908932061595, (5, 5) = .0, (6, 1) = 8.083246795922411, (6, 2) = -7.981132988062785, (6, 3) = -31.52159432874373, (6, 4) = 16.319305431231363, (6, 5) = -6.0588182388340535}, datatype = float[8], order = C_order), Array(1..3, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 10.126235083446911, (2, 2) = -7.487995877607633, (2, 3) = -34.800918615557414, (2, 4) = -7.9927717075687275, (2, 5) = 1.0251377232956207, (3, 1) = -.6762803392806898, (3, 2) = 6.087714651678606, (3, 3) = 16.43084320892463, (3, 4) = 24.767225114183653, (3, 5) = -6.5943891257167815}, datatype = float[8], order = C_order)]), ( 9 ) = ([Array(1..1, {(1) = .1}, datatype = float[8], order = C_order), Array(1..1, {(1) = -1.2299999999798035}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = -.0}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, 1..1, {(1, 1) = .0}, datatype = float[8], order = C_order), Array(1..1, 1..1, {(1, 1) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, 1..1, {(1, 1) = .0}, datatype = float[8], order = C_order), Array(1..1, 1..6, {(1, 1) = -.0, (1, 2) = -.0, (1, 3) = -.0, (1, 4) = -.0, (1, 5) = -.0, (1, 6) = -.0}, datatype = float[8], order = C_order), Array(1..1, {(1) = 0}, datatype = integer[8]), Array(1..1, {(1) = -1.2299999999798037}, datatype = float[8], order = C_order), Array(1..1, {(1) = -1.2299999999798035}, datatype = float[8], order = C_order), Array(1..1, {(1) = 0.296010311817696e-7}, datatype = float[8], order = C_order), Array(1..1, {(1) = -1.2299999999798035}, datatype = float[8], order = C_order), Array(1..1, {(1) = -0.18901959074120248e-6}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = 0}, datatype = integer[8])]), ( 8 ) = ([Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = -12.174786}, datatype = float[8], order = C_order), 0, 0]), ( 11 ) = (Array(1..6, 0..1, {(1, 1) = .0, (2, 0) = .0, (2, 1) = .0, (3, 0) = .0, (3, 1) = .0, (4, 0) = .0, (4, 1) = .0, (5, 0) = .0, (5, 1) = .0, (6, 0) = .0, (6, 1) = .0}, datatype = float[8], order = C_order)), ( 10 ) = ([proc (N, X, Y, YP) option `[Y[1] = a3(z)]`; if -.1826283878*Y[1]^2 < -1 then YP[1] := undefined; return 0 end if; if -.6609822196*Y[1]^2 < -1 then YP[1] := undefined; return 0 end if; YP[1] := -12.174786*evalf((1-.6609822196*Y[1]^2)^(1/2))*evalf((1-.1826283878*Y[1]^2)^(1/2)); 0 end proc, -1, 0, 0, 0, 0, 0, 0, 0, 0]), ( 13 ) = (), ( 12 ) = (), ( 15 ) = ("rkf45"), ( 14 ) = ([0, 0]), ( 18 ) = ([]), ( 19 ) = (0), ( 16 ) = ([0, 0, 0, 0, 0, []]), ( 17 ) = ([proc (N, X, Y, YP) option `[Y[1] = a3(z)]`; if -.1826283878*Y[1]^2 < -1 then YP[1] := undefined; return 0 end if; if -.6609822196*Y[1]^2 < -1 then YP[1] := undefined; return 0 end if; YP[1] := -12.174786*evalf((1-.6609822196*Y[1]^2)^(1/2))*evalf((1-.1826283878*Y[1]^2)^(1/2)); 0 end proc, -1, 0, 0, 0, 0, 0, 0, 0, 0]), ( 22 ) = (0), ( 23 ) = (0), ( 20 ) = ([]), ( 21 ) = (0), ( 26 ) = (Array(1..0, {})), ( 25 ) = (Array(1..0, {})), ( 24 ) = (0)  ] )), ( 3 ) = (array( 1 .. 26, [( 1 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 2 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 3 ) = ([0, 0, 0, Array(1..0, 1..2, {}, datatype = float[8], order = C_order)]), ( 4 ) = (Array(1..63, {(1) = 1, (2) = 1, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 1, (8) = 1, (9) = 0, (10) = 1, (11) = 305, (12) = 305, (13) = 0, (14) = 0, (15) = 0, (16) = 0, (17) = 0, (18) = 662, (19) = 30000, (20) = 5, (21) = 0, (22) = 1, (23) = 4, (24) = 0, (25) = 1, (26) = 15, (27) = 1, (28) = 0, (29) = 1, (30) = 3, (31) = 3, (32) = 0, (33) = 1, (34) = 0, (35) = 0, (36) = 0, (37) = 0, (38) = 0, (39) = 0, (40) = 0, (41) = 0, (42) = 0, (43) = 1, (44) = 0, (45) = 0, (46) = 0, (47) = 0, (48) = 0, (49) = 0, (50) = 50, (51) = 1, (52) = 0, (53) = 0, (54) = 0, (55) = 0, (56) = 0, (57) = 0, (58) = 0, (59) = 10000, (60) = 0, (61) = 1000, (62) = 0, (63) = 0}, datatype = integer[8])), ( 5 ) = (Array(1..28, {(1) = 1.0, (2) = 0.10e-5, (3) = .8581218124879464, (4) = 0.500001e-14, (5) = .0, (6) = 0.41459938234984545e-3, (7) = .0, (8) = 0.10e-5, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = 1.0, (14) = .0, (15) = .49999999999999, (16) = .0, (17) = 1.0, (18) = 1.0, (19) = .0, (20) = .0, (21) = 1.0, (22) = 1.0, (23) = .0, (24) = .0, (25) = 0.10e-14, (26) = .0, (27) = .0, (28) = .0}, datatype = float[8], order = C_order)), ( 6 ) = (Array(1..1, {(1) = .0}, datatype = float[8], order = C_order)), ( 7 ) = ([Array(1..4, 1..7, {(1, 1) = .0, (1, 2) = .203125, (1, 3) = .3046875, (1, 4) = .75, (1, 5) = .8125, (1, 6) = .40625, (1, 7) = .8125, (2, 1) = 0.6378173828125e-1, (2, 2) = .0, (2, 3) = .279296875, (2, 4) = .27237892150878906, (2, 5) = -0.9686851501464844e-1, (2, 6) = 0.1956939697265625e-1, (2, 7) = .5381584167480469, (3, 1) = 0.31890869140625e-1, (3, 2) = .0, (3, 3) = -.34375, (3, 4) = -.335235595703125, (3, 5) = .2296142578125, (3, 6) = .41748046875, (3, 7) = 11.480712890625, (4, 1) = 0.9710520505905151e-1, (4, 2) = .0, (4, 3) = .40350341796875, (4, 4) = 0.20297467708587646e-1, (4, 5) = -0.6054282188415527e-2, (4, 6) = -0.4770040512084961e-1, (4, 7) = .77858567237854}, datatype = float[8], order = C_order), Array(1..6, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = 1.0, (2, 1) = .25, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = 1.0, (3, 1) = .1875, (3, 2) = .5625, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = 2.0, (4, 1) = .23583984375, (4, 2) = -.87890625, (4, 3) = .890625, (4, 4) = .0, (4, 5) = .0, (4, 6) = .2681884765625, (5, 1) = .1272735595703125, (5, 2) = -.5009765625, (5, 3) = .44921875, (5, 4) = -0.128936767578125e-1, (5, 5) = .0, (5, 6) = 0.626220703125e-1, (6, 1) = -0.927734375e-1, (6, 2) = .626220703125, (6, 3) = -.4326171875, (6, 4) = .1418304443359375, (6, 5) = -0.861053466796875e-1, (6, 6) = .3131103515625}, datatype = float[8], order = C_order), Array(1..6, {(1) = .0, (2) = .386, (3) = .21, (4) = .63, (5) = 1.0, (6) = 1.0}, datatype = float[8], order = C_order), Array(1..6, {(1) = .25, (2) = -.1043, (3) = .1035, (4) = -0.362e-1, (5) = .0, (6) = .0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 1.544, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = .9466785280815533, (3, 2) = .25570116989825814, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = 3.3148251870684886, (4, 2) = 2.896124015972123, (4, 3) = .9986419139977808, (4, 4) = .0, (4, 5) = .0, (5, 1) = 1.2212245092262748, (5, 2) = 6.019134481287752, (5, 3) = 12.537083329320874, (5, 4) = -.687886036105895, (5, 5) = .0, (6, 1) = 1.2212245092262748, (6, 2) = 6.019134481287752, (6, 3) = 12.537083329320874, (6, 4) = -.687886036105895, (6, 5) = 1.0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = -5.6688, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = -2.4300933568337584, (3, 2) = -.20635991570891224, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = -.10735290581452621, (4, 2) = -9.594562251021896, (4, 3) = -20.470286148096154, (4, 4) = .0, (4, 5) = .0, (5, 1) = 7.496443313968615, (5, 2) = -10.246804314641219, (5, 3) = -33.99990352819906, (5, 4) = 11.708908932061595, (5, 5) = .0, (6, 1) = 8.083246795922411, (6, 2) = -7.981132988062785, (6, 3) = -31.52159432874373, (6, 4) = 16.319305431231363, (6, 5) = -6.0588182388340535}, datatype = float[8], order = C_order), Array(1..3, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 10.126235083446911, (2, 2) = -7.487995877607633, (2, 3) = -34.800918615557414, (2, 4) = -7.9927717075687275, (2, 5) = 1.0251377232956207, (3, 1) = -.6762803392806898, (3, 2) = 6.087714651678606, (3, 3) = 16.43084320892463, (3, 4) = 24.767225114183653, (3, 5) = -6.5943891257167815}, datatype = float[8], order = C_order)]), ( 9 ) = ([Array(1..1, {(1) = .1}, datatype = float[8], order = C_order), Array(1..1, {(1) = -1.2299999999798035}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = -.0}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, 1..1, {(1, 1) = .0}, datatype = float[8], order = C_order), Array(1..1, 1..1, {(1, 1) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, 1..1, {(1, 1) = .0}, datatype = float[8], order = C_order), Array(1..1, 1..6, {(1, 1) = -.0, (1, 2) = -.0, (1, 3) = -.0, (1, 4) = -.0, (1, 5) = -.0, (1, 6) = -.0}, datatype = float[8], order = C_order), Array(1..1, {(1) = 0}, datatype = integer[8]), Array(1..1, {(1) = -1.2299999999798037}, datatype = float[8], order = C_order), Array(1..1, {(1) = -1.2299999999798035}, datatype = float[8], order = C_order), Array(1..1, {(1) = 0.296010311817696e-7}, datatype = float[8], order = C_order), Array(1..1, {(1) = -1.2299999999798035}, datatype = float[8], order = C_order), Array(1..1, {(1) = -0.18901959074120248e-6}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = 0}, datatype = integer[8])]), ( 8 ) = ([Array(1..1, {(1) = -1.2299999999798035}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = -.0}, datatype = float[8], order = C_order), 0, 0]), ( 11 ) = (Array(1..6, 0..1, {(1, 1) = .5904539721647559, (2, 0) = .5904539721647559, (2, 1) = -1.2299999999798035, (3, 0) = -1.2299999999798035, (3, 1) = .7157363544252189, (4, 0) = .7157363544252189, (4, 1) = -1.2299999999798032, (5, 0) = -1.2299999999798032, (5, 1) = .8410187366856818, (6, 0) = .8410187366856818, (6, 1) = -1.2299999999798035}, datatype = float[8], order = C_order)), ( 10 ) = ([proc (N, X, Y, YP) option `[Y[1] = a3(z)]`; if -.1826283878*Y[1]^2 < -1 then YP[1] := undefined; return 0 end if; if -.6609822196*Y[1]^2 < -1 then YP[1] := undefined; return 0 end if; YP[1] := -12.174786*evalf((1-.6609822196*Y[1]^2)^(1/2))*evalf((1-.1826283878*Y[1]^2)^(1/2)); 0 end proc, -1, 0, 0, 0, 0, 0, 0, 0, 0]), ( 13 ) = (), ( 12 ) = (Array(1..305, 0..1, {(1, 1) = .0, (2, 0) = .0, (2, 1) = .0, (3, 0) = .0, (3, 1) = 0.10364984558746136e-3, (4, 0) = 0.10364984558746136e-3, (4, 1) = -0.12619144064209943e-2, (5, 0) = -0.12619144064209943e-2, (5, 1) = 0.20729969117492272e-3, (6, 0) = 0.20729969117492272e-3, (6, 1) = -0.25238271175993233e-2, (7, 0) = -0.25238271175993233e-2, (7, 1) = 0.3109495367623841e-3, (8, 0) = 0.3109495367623841e-3, (8, 1) = -0.37857364383006736e-2, (9, 0) = -0.37857364383006736e-2, (9, 1) = 0.41459938234984545e-3, (10, 0) = 0.41459938234984545e-3, (10, 1) = -0.5047640673306076e-2, (11, 0) = -0.5047640673306076e-2, (11, 1) = 0.34833604325880127e-2, (12, 0) = 0.34833604325880127e-2, (12, 1) = -0.4239847049454727e-1, (13, 0) = -0.4239847049454727e-1, (13, 1) = 0.6552121482826179e-2, (14, 0) = 0.6552121482826179e-2, (14, 1) = -0.7969938711162143e-1, (15, 0) = -0.7969938711162143e-1, (15, 1) = 0.9620882533064347e-2, (16, 0) = 0.9620882533064347e-2, (16, 1) = -.11690662945170899, (17, 0) = -.11690662945170899, (17, 1) = 0.12689643583302514e-1, (18, 0) = 0.12689643583302514e-1, (18, 1) = -.15397680385648438, (19, 0) = -.15397680385648438, (19, 1) = 0.16122517299749697e-1, (20, 0) = 0.16122517299749697e-1, (20, 1) = -.19523010696600793, (21, 0) = -.19523010696600793, (21, 1) = 0.1955539101619688e-1, (22, 0) = 0.1955539101619688e-1, (22, 1) = -.2361989204547763, (23, 0) = -.2361989204547763, (23, 1) = 0.22988264732644058e-1, (24, 0) = 0.22988264732644058e-1, (24, 1) = -.2768253183563231, (25, 0) = -.2768253183563231, (25, 1) = 0.2642113844909124e-1, (26, 0) = 0.2642113844909124e-1, (26, 1) = -.3170529026160392, (27, 0) = -.3170529026160392, (27, 1) = 0.30427773082452543e-1, (28, 0) = 0.30427773082452543e-1, (28, 1) = -.36342665103366517, (29, 0) = -.36342665103366517, (29, 1) = 0.3443440771581385e-1, (30, 0) = 0.3443440771581385e-1, (30, 1) = -.4090987177000091, (31, 0) = -.4090987177000091, (31, 1) = 0.38441042349175156e-1, (32, 0) = 0.38441042349175156e-1, (32, 1) = -.4539892102217507, (33, 0) = -.4539892102217507, (33, 1) = 0.4244767698253646e-1, (34, 0) = 0.4244767698253646e-1, (34, 1) = -.4980225521011199, (35, 0) = -.4980225521011199, (35, 1) = 0.4707601510214095e-1, (36, 0) = 0.4707601510214095e-1, (36, 1) = -.5477285925071234, (37, 0) = -.5477285925071234, (37, 1) = 0.51704353221745436e-1, (38, 0) = 0.51704353221745436e-1, (38, 1) = -.5960941342765066, (39, 0) = -.5960941342765066, (39, 1) = 0.5633269134134993e-1, (40, 0) = 0.5633269134134993e-1, (40, 1) = -.6430260154216566, (41, 0) = -.6430260154216566, (41, 1) = 0.6096102946095442e-1, (42, 0) = 0.6096102946095442e-1, (42, 1) = -.6884400249508265, (43, 0) = -.6884400249508265, (43, 1) = 0.6591253046747747e-1, (44, 0) = 0.6591253046747747e-1, (44, 1) = -.7352591969666599, (45, 0) = -.7352591969666599, (45, 1) = 0.708640314740005e-1, (46, 0) = 0.708640314740005e-1, (46, 1) = -.7801740469048234, (47, 0) = -.7801740469048234, (47, 1) = 0.7581553248052356e-1, (48, 0) = 0.7581553248052356e-1, (48, 1) = -.823114685686209, (49, 0) = -.823114685686209, (49, 1) = 0.8076703348704659e-1, (50, 0) = 0.8076703348704659e-1, (50, 1) = -.8640218768230735, (51, 0) = -.8640218768230735, (51, 1) = 0.8484972859805444e-1, (52, 0) = 0.8484972859805444e-1, (52, 1) = -.8961869115432886, (53, 0) = -.8961869115432886, (53, 1) = 0.8893242370906229e-1, (54, 0) = 0.8893242370906229e-1, (54, 1) = -.9269138185229375, (55, 0) = -.9269138185229375, (55, 1) = 0.9301511882007014e-1, (56, 0) = 0.9301511882007014e-1, (56, 1) = -.9561842211393343, (57, 0) = -.9561842211393343, (57, 1) = 0.97097813931078e-1, (58, 0) = 0.97097813931078e-1, (58, 1) = -.9839833318110524, (59, 0) = -.9839833318110524, (59, 1) = .10062211222744795, (60, 0) = .10062211222744795, (60, 1) = -1.00678840597731, (61, 0) = -1.00678840597731, (61, 1) = .1041464105238179, (62, 0) = .1041464105238179, (62, 1) = -1.0284836142185316, (63, 0) = -1.0284836142185316, (63, 1) = .10767070882018787, (64, 0) = .10767070882018787, (64, 1) = -1.0490652330689563, (65, 0) = -1.0490652330689563, (65, 1) = .11119500711655782, (66, 0) = .11119500711655782, (66, 1) = -1.0685307214599358, (67, 0) = -1.0685307214599358, (67, 1) = .11431310243096295, (68, 0) = .11431310243096295, (68, 1) = -1.0848210444115174, (69, 0) = -1.0848210444115174, (69, 1) = .11743119774536806, (70, 0) = .11743119774536806, (70, 1) = -1.1002368207021282, (71, 0) = -1.1002368207021282, (71, 1) = .12054929305977319, (72, 0) = .12054929305977319, (72, 1) = -1.1147785546137297, (73, 0) = -1.1147785546137297, (73, 1) = .12366738837417832, (74, 0) = .12366738837417832, (74, 1) = -1.1284469811889712, (75, 0) = -1.1284469811889712, (75, 1) = .12640348363182397, (76, 0) = .12640348363182397, (76, 1) = -1.139722414348455, (77, 0) = -1.139722414348455, (77, 1) = .12913957888946964, (78, 0) = .12913957888946964, (78, 1) = -1.1503276739740989, (79, 0) = -1.1503276739740989, (79, 1) = .1318756741471153, (80, 0) = .1318756741471153, (80, 1) = -1.1602640698603375, (81, 0) = -1.1602640698603375, (81, 1) = .13461176940476094, (82, 0) = .13461176940476094, (82, 1) = -1.1695327191271392, (83, 0) = -1.1695327191271392, (83, 1) = .13696983833440174, (84, 0) = .13696983833440174, (84, 1) = -1.176985980079806, (85, 0) = -1.176985980079806, (85, 1) = .13932790726404257, (86, 0) = .13932790726404257, (86, 1) = -1.1839454443423434, (87, 0) = -1.1839454443423434, (87, 1) = .1416859761936834, (88, 0) = .1416859761936834, (88, 1) = -1.1904121474004363, (89, 0) = -1.1904121474004363, (89, 1) = .1440440451233242, (90, 0) = .1440440451233242, (90, 1) = -1.1963867324416086, (91, 0) = -1.1963867324416086, (91, 1) = .1460273668718157, (92, 0) = .1460273668718157, (92, 1) = -1.2010312720960516, (93, 0) = -1.2010312720960516, (93, 1) = .1480106886203072, (94, 0) = .1480106886203072, (94, 1) = -1.205329097234056, (95, 0) = -1.205329097234056, (95, 1) = .14999401036879872, (96, 0) = .14999401036879872, (96, 1) = -1.2092808344125783, (97, 0) = -1.2092808344125783, (97, 1) = .15197733211729023, (98, 0) = .15197733211729023, (98, 1) = -1.21288657506271, (99, 0) = -1.21288657506271, (99, 1) = .1532419292906772, (100, 0) = .1532419292906772, (100, 1) = -1.2150050645441022, (101, 0) = -1.2150050645441022, (101, 1) = .15450652646406415, (102, 0) = .15450652646406415, (102, 1) = -1.216983271248191, (103, 0) = -1.216983271248191, (103, 1) = .1557711236374511, (104, 0) = .1557711236374511, (104, 1) = -1.2188213276236481, (105, 0) = -1.2188213276236481, (105, 1) = .15703572081083808, (106, 0) = .15703572081083808, (106, 1) = -1.2205192473023838, (107, 0) = -1.2205192473023838, (107, 1) = .15830031798422506, (108, 0) = .15830031798422506, (108, 1) = -1.2220769857946303, (109, 0) = -1.2220769857946303, (109, 1) = .159564915157612, (110, 0) = .159564915157612, (110, 1) = -1.223494984245328, (111, 0) = -1.223494984245328, (111, 1) = .16082951233099896, (112, 0) = .16082951233099896, (112, 1) = -1.2247734508793204, (113, 0) = -1.2247734508793204, (113, 1) = .16209410950438594, (114, 0) = .16209410950438594, (114, 1) = -1.2259120009260447, (115, 0) = -1.2259120009260447, (115, 1) = .1628087356247067, (116, 0) = .1628087356247067, (116, 1) = -1.2264933895115786, (117, 0) = -1.2264933895115786, (117, 1) = .16352336174502746, (118, 0) = .16352336174502746, (118, 1) = -1.227030198914469, (119, 0) = -1.227030198914469, (119, 1) = .16423798786534824, (120, 0) = .16423798786534824, (120, 1) = -1.227522456457831, (121, 0) = -1.227522456457831, (121, 1) = .16495261398566902, (122, 0) = .16495261398566902, (122, 1) = -1.2279701111889383, (123, 0) = -1.2279701111889383, (123, 1) = .1656672401059898, (124, 0) = .1656672401059898, (124, 1) = -1.228373025983339, (125, 0) = -1.228373025983339, (125, 1) = .16638186622631057, (126, 0) = .16638186622631057, (126, 1) = -1.228731595465733, (127, 0) = -1.228731595465733, (127, 1) = .16709649234663132, (128, 0) = .16709649234663132, (128, 1) = -1.2290459781678713, (129, 0) = -1.2290459781678713, (129, 1) = .1678111184669521, (130, 0) = .1678111184669521, (130, 1) = -1.2293156267116803, (131, 0) = -1.2293156267116803, (131, 1) = .1679534238328131, (132, 0) = .1679534238328131, (132, 1) = -1.2293639137091485, (133, 0) = -1.2293639137091485, (133, 1) = .16809572919867405, (134, 0) = .16809572919867405, (134, 1) = -1.2294104341378878, (135, 0) = -1.2294104341378878, (135, 1) = .168238034564535, (136, 0) = .168238034564535, (136, 1) = -1.2294551880605513, (137, 0) = -1.2294551880605513, (137, 1) = .168380339930396, (138, 0) = .168380339930396, (138, 1) = -1.2294981754390624, (139, 0) = -1.2294981754390624, (139, 1) = .168522645296257, (140, 0) = .168522645296257, (140, 1) = -1.2295393962288792, (141, 0) = -1.2295393962288792, (141, 1) = .16866495066211795, (142, 0) = .16866495066211795, (142, 1) = -1.2295788506121428, (143, 0) = -1.2295788506121428, (143, 1) = .1688072560279789, (144, 0) = .1688072560279789, (144, 1) = -1.2296165386693825, (145, 0) = -1.2296165386693825, (145, 1) = .1689495613938399, (146, 0) = .1689495613938399, (146, 1) = -1.229652460286641, (147, 0) = -1.229652460286641, (147, 1) = .16907526225452904, (148, 0) = .16907526225452904, (148, 1) = -1.2296827211078099, (149, 0) = -1.2296827211078099, (149, 1) = .16920096311521818, (150, 0) = .16920096311521818, (150, 1) = -1.2297116037888527, (151, 0) = -1.2297116037888527, (151, 1) = .16932666397590732, (152, 0) = .16932666397590732, (152, 1) = -1.2297391083972988, (153, 0) = -1.2297391083972988, (153, 1) = .16945236483659645, (154, 0) = .16945236483659645, (154, 1) = -1.2297652348036772, (155, 0) = -1.2297652348036772, (155, 1) = .1695780656972856, (156, 0) = .1695780656972856, (156, 1) = -1.2297899828602528, (157, 0) = -1.2297899828602528, (157, 1) = .16970376655797473, (158, 0) = .16970376655797473, (158, 1) = -1.2298133529350264, (159, 0) = -1.2298133529350264, (159, 1) = .16982946741866387, (160, 0) = .16982946741866387, (160, 1) = -1.2298353451592163, (161, 0) = -1.2298353451592163, (161, 1) = .169955168279353, (162, 0) = .169955168279353, (162, 1) = -1.2298559591771572, (163, 0) = -1.2298559591771572, (163, 1) = .17005074170152765, (164, 0) = .17005074170152765, (164, 1) = -1.2298707100162487, (165, 0) = -1.2298707100162487, (165, 1) = .1701463151237023, (166, 0) = .1701463151237023, (166, 1) = -1.2298846642688712, (167, 0) = -1.2298846642688712, (167, 1) = .17024188854587693, (168, 0) = .17024188854587693, (168, 1) = -1.2298978219992245, (169, 0) = -1.2298978219992245, (169, 1) = .17033746196805158, (170, 0) = .17033746196805158, (170, 1) = -1.2299101830274517, (171, 0) = -1.2299101830274517, (171, 1) = .17043303539022622, (172, 0) = .17043303539022622, (172, 1) = -1.2299217471301178, (173, 0) = -1.2299217471301178, (173, 1) = .17052860881240087, (174, 0) = .17052860881240087, (174, 1) = -1.2299325148446703, (175, 0) = -1.2299325148446703, (175, 1) = .1706241822345755, (176, 0) = .1706241822345755, (176, 1) = -1.2299424863556812, (177, 0) = -1.2299424863556812, (177, 1) = .17071975565675016, (178, 0) = .17071975565675016, (178, 1) = -1.22995166105592, (179, 0) = -1.22995166105592, (179, 1) = .1707878199736112, (180, 0) = .1707878199736112, (180, 1) = -1.229957708889341, (181, 0) = -1.229957708889341, (181, 1) = .17085588429047222, (182, 0) = .17085588429047222, (182, 1) = -1.2299633527954243, (183, 0) = -1.2299633527954243, (183, 1) = .17092394860733326, (184, 0) = .17092394860733326, (184, 1) = -1.229968592854273, (185, 0) = -1.229968592854273, (185, 1) = .1709920129241943, (186, 0) = .1709920129241943, (186, 1) = -1.2299734288021393, (187, 0) = -1.2299734288021393, (187, 1) = .17106007724105535, (188, 0) = .17106007724105535, (188, 1) = -1.229977860204638, (189, 0) = -1.229977860204638, (189, 1) = .1711281415579164, (190, 0) = .1711281415579164, (190, 1) = -1.2299818881769908, (191, 0) = -1.2299818881769908, (191, 1) = .1711962058747774, (192, 0) = .1711962058747774, (192, 1) = -1.2299855131258797, (193, 0) = -1.2299855131258797, (193, 1) = .17126427019163845, (194, 0) = .17126427019163845, (194, 1) = -1.2299887335965314, (195, 0) = -1.2299887335965314, (195, 1) = .17130712356026062, (196, 0) = .17130712356026062, (196, 1) = -1.2299905531051283, (197, 0) = -1.2299905531051283, (197, 1) = .1713499769288828, (198, 0) = .1713499769288828, (198, 1) = -1.2299922126515708, (199, 0) = -1.2299922126515708, (199, 1) = .17139283029750496, (200, 0) = .17139283029750496, (200, 1) = -1.2299937123674143, (201, 0) = -1.2299937123674143, (201, 1) = .17143568366612713, (202, 0) = .17143568366612713, (202, 1) = -1.229995051783982, (203, 0) = -1.229995051783982, (203, 1) = .1714785370347493, (204, 0) = .1714785370347493, (204, 1) = -1.2299962284419177, (205, 0) = -1.2299962284419177, (205, 1) = .17152139040337147, (206, 0) = .17152139040337147, (206, 1) = -1.229997248910503, (207, 0) = -1.229997248910503, (207, 1) = .17156424377199364, (208, 0) = .17156424377199364, (208, 1) = -1.2299981160027433, (209, 0) = -1.2299981160027433, (209, 1) = .1716070971406158, (210, 0) = .1716070971406158, (210, 1) = -1.2299988194501785, (211, 0) = -1.2299988194501785, (211, 1) = .1716268701874011, (212, 0) = .1716268701874011, (212, 1) = -1.2299990858657959, (213, 0) = -1.2299990858657959, (213, 1) = .17164664323418638, (214, 0) = .17164664323418638, (214, 1) = -1.2299993186848845, (215, 0) = -1.2299993186848845, (215, 1) = .17166641628097168, (216, 0) = .17166641628097168, (216, 1) = -1.2299995182568093, (217, 0) = -1.2299995182568093, (217, 1) = .17168618932775698, (218, 0) = .17168618932775698, (218, 1) = -1.2299996833052242, (219, 0) = -1.2299996833052242, (219, 1) = .1716909618897975, (220, 0) = .1716909618897975, (220, 1) = -1.2299997177818978, (221, 0) = -1.2299997177818978, (221, 1) = .17169573445183803, (222, 0) = .17169573445183803, (222, 1) = -1.2299997502723743, (223, 0) = -1.2299997502723743, (223, 1) = .17170050701387857, (224, 0) = .17170050701387857, (224, 1) = -1.2299997807768501, (225, 0) = -1.2299997807768501, (225, 1) = .17170527957591908, (226, 0) = .17170527957591908, (226, 1) = -1.2299998092947007, (227, 0) = -1.2299998092947007, (227, 1) = .1717100521379596, (228, 0) = .1717100521379596, (228, 1) = -1.2299998358251032, (229, 0) = -1.2299998358251032, (229, 1) = .17171482470000013, (230, 0) = .17171482470000013, (230, 1) = -1.2299998603700404, (231, 0) = -1.2299998603700404, (231, 1) = .17171959726204067, (232, 0) = .17171959726204067, (232, 1) = -1.2299998829301964, (233, 0) = -1.2299998829301964, (233, 1) = .17172436982408118, (234, 0) = .17172436982408118, (234, 1) = -1.2299999035032116, (235, 0) = -1.2299999035032116, (235, 1) = .17172897758102992, (236, 0) = .17172897758102992, (236, 1) = -1.2299999214762944, (237, 0) = -1.2299999214762944, (237, 1) = .17173358533797867, (238, 0) = .17173358533797867, (238, 1) = -1.2299999376035862, (239, 0) = -1.2299999376035862, (239, 1) = .1717381930949274, (240, 0) = .1717381930949274, (240, 1) = -1.2299999518890175, (241, 0) = -1.2299999518890175, (241, 1) = .17174280085187615, (242, 0) = .17174280085187615, (242, 1) = -1.2299999643183166, (243, 0) = -1.2299999643183166, (243, 1) = .17174391301259395, (244, 0) = .17174391301259395, (244, 1) = -1.229999967038151, (245, 0) = -1.229999967038151, (245, 1) = .17174502517331172, (246, 0) = .17174502517331172, (246, 1) = -1.2299999696501147, (247, 0) = -1.2299999696501147, (247, 1) = .1717461373340295, (248, 0) = .1717461373340295, (248, 1) = -1.2299999721542105, (249, 0) = -1.2299999721542105, (249, 1) = .1717472494947473, (250, 0) = .1717472494947473, (250, 1) = -1.2299999745504322, (251, 0) = -1.2299999745504322, (251, 1) = .1717483616554651, (252, 0) = .1717483616554651, (252, 1) = -1.229999976838773, (253, 0) = -1.229999976838773, (253, 1) = .17174947381618286, (254, 0) = .17174947381618286, (254, 1) = -1.2299999790192464, (255, 0) = -1.2299999790192464, (255, 1) = .17175058597690063, (256, 0) = .17175058597690063, (256, 1) = -1.2299999810918574, (257, 0) = -1.2299999810918574, (257, 1) = .17175169813761842, (258, 0) = .17175169813761842, (258, 1) = -1.229999983056592, (259, 0) = -1.229999983056592, (259, 1) = .17175277189344013, (260, 0) = .17175277189344013, (260, 1) = -1.2299999848511147, (261, 0) = -1.2299999848511147, (261, 1) = .17175384564926183, (262, 0) = .17175384564926183, (262, 1) = -1.2299999865450983, (263, 0) = -1.2299999865450983, (263, 1) = .17175491940508356, (264, 0) = .17175491940508356, (264, 1) = -1.2299999881385508, (265, 0) = -1.2299999881385508, (265, 1) = .17175599316090526, (266, 0) = .17175599316090526, (266, 1) = -1.2299999896314446, (267, 0) = -1.2299999896314446, (267, 1) = .17175706691672696, (268, 0) = .17175706691672696, (268, 1) = -1.2299999910237447, (269, 0) = -1.2299999910237447, (269, 1) = .1717581406725487, (270, 0) = .1717581406725487, (270, 1) = -1.229999992315535, (271, 0) = -1.229999992315535, (271, 1) = .1717592144283704, (272, 0) = .1717592144283704, (272, 1) = -1.229999993506844, (273, 0) = -1.229999993506844, (273, 1) = .1717602881841921, (274, 0) = .1717602881841921, (274, 1) = -1.2299999945975741, (275, 0) = -1.2299999945975741, (275, 1) = .17176132486130738, (276, 0) = .17176132486130738, (276, 1) = -1.2299999955550536, (277, 0) = -1.2299999955550536, (277, 1) = .17176236153842267, (278, 0) = .17176236153842267, (278, 1) = -1.2299999964190211, (279, 0) = -1.2299999964190211, (279, 1) = .17176339821553796, (280, 0) = .17176339821553796, (280, 1) = -1.229999997189621, (281, 0) = -1.229999997189621, (281, 1) = .17176443489265325, (282, 0) = .17176443489265325, (282, 1) = -1.229999997866332, (283, 0) = -1.229999997866332, (283, 1) = .17176468511235396, (284, 0) = .17176468511235396, (284, 1) = -1.2299999980155247, (285, 0) = -1.2299999980155247, (285, 1) = .17176493533205467, (286, 0) = .17176493533205467, (286, 1) = -1.229999998159257, (287, 0) = -1.229999998159257, (287, 1) = .17176518555175538, (288, 0) = .17176518555175538, (288, 1) = -1.2299999982975294, (289, 0) = -1.2299999982975294, (289, 1) = .1717654357714561, (290, 0) = .1717654357714561, (290, 1) = -1.2299999984303411, (291, 0) = -1.2299999984303411, (291, 1) = .1717656859911568, (292, 0) = .1717656859911568, (292, 1) = -1.229999998557692, (293, 0) = -1.229999998557692, (293, 1) = .1717659362108575, (294, 0) = .1717659362108575, (294, 1) = -1.2299999986795835, (295, 0) = -1.2299999986795835, (295, 1) = .17176618643055822, (296, 0) = .17176618643055822, (296, 1) = -1.2299999987960144, (297, 0) = -1.2299999987960144, (297, 1) = .17176643665025892, (298, 0) = .17176643665025892, (298, 1) = -1.229999998906985, (299, 0) = -1.229999998906985, (299, 1) = .17176667822942643, (300, 0) = .17176667822942643, (300, 1) = -1.229999999008942, (301, 0) = -1.229999999008942, (301, 1) = .17176691980859393, (302, 0) = .17176691980859393, (302, 1) = -1.22999999910581, (303, 0) = -1.22999999910581, (303, 1) = .17176716138776146, (304, 0) = .17176716138776146, (304, 1) = -1.229999999197589, (305, 0) = -1.229999999197589, (305, 1) = .17176740296692897}, datatype = float[8], order = C_order)), ( 15 ) = ("rkf45"), ( 14 ) = ([0, 0]), ( 19 ) = (0), ( 16 ) = ([0, 0, 0, 0, 0, []]), ( 17 ) = ([proc (N, X, Y, YP) option `[Y[1] = a3(z)]`; if -.1826283878*Y[1]^2 < -1 then YP[1] := undefined; return 0 end if; if -.6609822196*Y[1]^2 < -1 then YP[1] := undefined; return 0 end if; YP[1] := -12.174786*evalf((1-.6609822196*Y[1]^2)^(1/2))*evalf((1-.1826283878*Y[1]^2)^(1/2)); 0 end proc, -1, 0, 0, 0, 0, 0, 0, 0, 0]), ( 22 ) = (0), ( 23 ) = (0), ( 20 ) = ([]), ( 21 ) = (0), ( 26 ) = (Array(1..0, {})), ( 25 ) = (Array(1..0, {})), ( 24 ) = (0)  ] )), ( 4 ) = (3)  ] ); _y0 := Array(0..1, {(1) = 0.}); _vmap := array( 1 .. 1, [( 1 ) = (1)  ] ); _x0 := _dtbl[1][5][5]; _n := _dtbl[1][4][1]; _ne := _dtbl[1][4][3]; _nd := _dtbl[1][4][4]; _nv := _dtbl[1][4][16]; if not type(_xout, 'numeric') then if member(_xout, ["start", "left", "right"]) then if _Env_smart_dsolve_numeric = true or _dtbl[1][4][10] = 1 then if _xout = "left" then if type(_dtbl[2], 'table') then return _dtbl[2][5][1] end if elif _xout = "right" then if type(_dtbl[3], 'table') then return _dtbl[3][5][1] end if end if end if; return _dtbl[1][5][5] elif _xout = "method" then return _dtbl[1][15] elif _xout = "storage" then return evalb(_dtbl[1][4][10] = 1) elif _xout = "leftdata" then if not type(_dtbl[2], 'array') then return NULL else return eval(_dtbl[2]) end if elif _xout = "rightdata" then if not type(_dtbl[3], 'array') then return NULL else return eval(_dtbl[3]) end if elif _xout = "enginedata" then return eval(_dtbl[1]) elif _xout = "enginereset" then _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); return NULL elif _xout = "initial" then return procname(_y0[0]) elif _xout = "laxtol" then return _dtbl[`if`(member(_dtbl[4], {2, 3}), _dtbl[4], 1)][5][18] elif _xout = "numfun" then return `if`(member(_dtbl[4], {2, 3}), _dtbl[_dtbl[4]][4][18], 0) elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return procname(_y0[0]), [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "last" then if _dtbl[4] <> 2 and _dtbl[4] <> 3 or _x0-_dtbl[_dtbl[4]][5][1] = 0. then error "no information is available on last computed point" else _xout := _dtbl[_dtbl[4]][5][1] end if elif _xout = "function" then if _dtbl[1][4][33]-2. = 0 then return eval(_dtbl[1][10], 1) else return eval(_dtbl[1][10][1], 1) end if elif _xout = "map" then return copy(_vmap) elif type(_xin, `=`) and type(rhs(_xin), 'list') and member(lhs(_xin), {"initial", "parameters", "initial_and_parameters"}) then _ini, _par := [], []; if lhs(_xin) = "initial" then _ini := rhs(_xin) elif lhs(_xin) = "parameters" then _par := rhs(_xin) elif select(type, rhs(_xin), `=`) <> [] then _par, _ini := selectremove(type, rhs(_xin), `=`) elif nops(rhs(_xin)) < nops(_pars)+1 then error "insufficient data for specification of initial and parameters" else _par := rhs(_xin)[-nops(_pars) .. -1]; _ini := rhs(_xin)[1 .. -nops(_pars)-1] end if; _xout := lhs(_xout); _i := false; if _par <> [] then _i := `dsolve/numeric/process_parameters`(_n, _pars, _par, _y0) end if; if _ini <> [] then _i := `dsolve/numeric/process_initial`(_n-_ne, _ini, _y0, _pars, _vmap) or _i end if; if _i then `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars); if _Env_smart_dsolve_numeric = true and type(_y0[0], 'numeric') and _dtbl[1][4][10] <> 1 then procname("right") := _y0[0]; procname("left") := _y0[0] end if end if; if _xout = "initial" then return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)] elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] else return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)], [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] end if elif _xin = "eventstop" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then return 0 end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 100 and 100 <= _dtbl[5-_i][4][9] then _i := 5-_i; _dtbl[4] := _i; _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) elif 100 <= _dtbl[_i][4][9] then _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) else return 0 end if elif _xin = "eventstatus" then if _nv = 0 then error "this solution has no events" end if; _i := [selectremove(proc (a) options operator, arrow; _dtbl[1][3][1][a, 7] = 1 end proc, {seq(_j, _j = 1 .. round(_dtbl[1][3][1][_nv+1, 1]))})]; return ':-enabled' = _i[1], ':-disabled' = _i[2] elif _xin = "eventclear" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then error "no events to clear" end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 100 and 100 < _dtbl[5-_i][4][9] then _dtbl[4] := 5-_i; _i := 5-_i end if; if _dtbl[_i][4][9] < 100 then error "no events to clear" elif _nv < _dtbl[_i][4][9]-100 then error "event error condition cannot be cleared" else _j := _dtbl[_i][4][9]-100; if irem(round(_dtbl[_i][3][1][_j, 4]), 2) = 1 then error "retriggerable events cannot be cleared" end if; _j := round(_dtbl[_i][3][1][_j, 1]); for _k to _nv do if _dtbl[_i][3][1][_k, 1] = _j then if _dtbl[_i][3][1][_k, 2] = 3 then error "range events cannot be cleared" end if; _dtbl[_i][3][1][_k, 8] := _dtbl[_i][3][1][_nv+1, 8] end if end do; _dtbl[_i][4][17] := 0; _dtbl[_i][4][9] := 0; if _dtbl[1][4][10] = 1 then if _i = 2 then try procname(procname("left")) catch:  end try else try procname(procname("right")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and member(lhs(_xin), {"eventdisable", "eventenable"}) then if _nv = 0 then error "this solution has no events" end if; if type(rhs(_xin), {('list')('posint'), ('set')('posint')}) then _i := {op(rhs(_xin))} elif type(rhs(_xin), 'posint') then _i := {rhs(_xin)} else error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; if select(proc (a) options operator, arrow; _nv < a end proc, _i) <> {} then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _k := {}; for _j to _nv do if member(round(_dtbl[1][3][1][_j, 1]), _i) then _k := `union`(_k, {_j}) end if end do; _i := _k; if lhs(_xin) = "eventdisable" then _dtbl[4] := 0; _j := [evalb(assigned(_dtbl[2]) and member(_dtbl[2][4][17], _i)), evalb(assigned(_dtbl[3]) and member(_dtbl[3][4][17], _i))]; for _k in _i do _dtbl[1][3][1][_k, 7] := 0; if assigned(_dtbl[2]) then _dtbl[2][3][1][_k, 7] := 0 end if; if assigned(_dtbl[3]) then _dtbl[3][3][1][_k, 7] := 0 end if end do; if _j[1] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[2][3][4][_k, 1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to defined init `, _dtbl[2][3][4][_k, 1]); _dtbl[2][3][1][_k, 8] := _dtbl[2][3][4][_k, 1] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to rate hysteresis init `, _dtbl[2][5][24]); _dtbl[2][3][1][_k, 8] := _dtbl[2][5][24] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to initial init `, _x0); _dtbl[2][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to fireinitial init `, _x0-1); _dtbl[2][3][1][_k, 8] := _x0-1 end if end do; _dtbl[2][4][17] := 0; _dtbl[2][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("left")) end if end if; if _j[2] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[3][3][4][_k, 2], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to defined init `, _dtbl[3][3][4][_k, 2]); _dtbl[3][3][1][_k, 8] := _dtbl[3][3][4][_k, 2] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to rate hysteresis init `, _dtbl[3][5][24]); _dtbl[3][3][1][_k, 8] := _dtbl[3][5][24] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to initial init `, _x0); _dtbl[3][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to fireinitial init `, _x0+1); _dtbl[3][3][1][_k, 8] := _x0+1 end if end do; _dtbl[3][4][17] := 0; _dtbl[3][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("right")) end if end if else for _k in _i do _dtbl[1][3][1][_k, 7] := 1 end do; _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); _dtbl[4] := 0; if _dtbl[1][4][10] = 1 then if _x0 <= procname("right") then try procname(procname("right")) catch:  end try end if; if procname("left") <= _x0 then try procname(procname("left")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and lhs(_xin) = "eventfired" then if not type(rhs(_xin), 'list') then error "'eventfired' must be specified as a list" end if; if _nv = 0 then error "this solution has no events" end if; if _dtbl[4] <> 2 and _dtbl[4] <> 3 then error "'direction' must be set prior to calling/setting 'eventfired'" end if; _i := _dtbl[4]; _val := NULL; if not assigned(_EnvEventRetriggerWarned) then _EnvEventRetriggerWarned := false end if; for _k in rhs(_xin) do if type(_k, 'integer') then _src := _k elif type(_k, 'integer' = 'anything') and type(evalf(rhs(_k)), 'numeric') then _k := lhs(_k) = evalf[max(Digits, 18)](rhs(_k)); _src := lhs(_k) else error "'eventfired' entry is not valid: %1", _k end if; if _src < 1 or round(_dtbl[1][3][1][_nv+1, 1]) < _src then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _src := {seq(`if`(_dtbl[1][3][1][_j, 1]-_src = 0., _j, NULL), _j = 1 .. _nv)}; if nops(_src) <> 1 then error "'eventfired' can only be set/queried for root-finding events and time/interval events" end if; _src := _src[1]; if _dtbl[1][3][1][_src, 2] <> 0. and _dtbl[1][3][1][_src, 2]-2. <> 0. then error "'eventfired' can only be set/queried for root-finding events and time/interval events" elif irem(round(_dtbl[1][3][1][_src, 4]), 2) = 1 then if _EnvEventRetriggerWarned = false then WARNING(`'eventfired' has no effect on events that retrigger`) end if; _EnvEventRetriggerWarned := true end if; if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then _val := _val, undefined elif type(_dtbl[_i][3][4][_src, _i-1], 'undefined') or _i = 2 and _dtbl[2][3][1][_src, 8] < _dtbl[2][3][4][_src, 1] or _i = 3 and _dtbl[3][3][4][_src, 2] < _dtbl[3][3][1][_src, 8] then _val := _val, _dtbl[_i][3][1][_src, 8] else _val := _val, _dtbl[_i][3][4][_src, _i-1] end if; if type(_k, `=`) then if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then error "cannot set event code for a rate hysteresis event" end if; userinfo(3, {'events', 'eventreset'}, `manual set event code `, _src, ` to value `, rhs(_k)); _dtbl[_i][3][1][_src, 8] := rhs(_k); _dtbl[_i][3][4][_src, _i-1] := rhs(_k) end if end do; return [_val] elif type(_xin, `=`) and lhs(_xin) = "direction" then if not member(rhs(_xin), {-1, 1, ':-left', ':-right'}) then error "'direction' must be specified as either '1' or 'right' (positive) or '-1' or 'left' (negative)" end if; _src := `if`(_dtbl[4] = 2, -1, `if`(_dtbl[4] = 3, 1, undefined)); _i := `if`(member(rhs(_xin), {1, ':-right'}), 3, 2); _dtbl[4] := _i; _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if; return _src elif _xin = "eventcount" then if _dtbl[1][3][1] = 0 or _dtbl[4] <> 2 and _dtbl[4] <> 3 then return 0 else return round(_dtbl[_dtbl[4]][3][1][_nv+1, 12]) end if else return "procname" end if end if; if _xout = _x0 then return [_x0, seq(evalf(_dtbl[1][6][_vmap[_i]]), _i = 1 .. _n-_ne)] end if; _i := `if`(_x0 <= _xout, 3, 2); if _xin = "last" and 0 < _dtbl[_i][4][9] and _dtbl[_i][4][9] < 100 then _dat := eval(_dtbl[_i], 2); _j := _dat[4][20]; return [_dat[11][_j, 0], seq(_dat[11][_j, _vmap[_i]], _i = 1 .. _n-_ne-_nd), seq(_dat[8][1][_vmap[_i]], _i = _n-_ne-_nd+1 .. _n-_ne)] end if; if not type(_dtbl[_i], 'array') then _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if end if; if _xin <> "last" then if 0 < 0 then if `dsolve/numeric/checkglobals`(op(_dtbl[1][14]), _pars, _n, _y0) then `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars, _i) end if end if; if _dtbl[1][4][7] = 0 then error "parameters must be initialized before solution can be computed" end if end if; _dat := eval(_dtbl[_i], 2); _dtbl[4] := _i; try _src := `dsolve/numeric/SC/IVPrun`(_dat, _xout) catch: userinfo(2, `dsolve/debug`, print(`Exception in solnproc:`, [lastexception][2 .. -1])); error  end try; if _dat[17] <> _dtbl[1][17] then _dtbl[1][17] := _dat[17]; _dtbl[1][10] := _dat[10] end if; if _src = 0 and 100 < _dat[4][9] then _val := _dat[3][1][_nv+1, 8] else _val := _dat[11][_dat[4][20], 0] end if; if _src <> 0 or _dat[4][9] <= 0 then _dtbl[1][5][1] := _xout else _dtbl[1][5][1] := _val end if; if _i = 3 and _val < _xout then Rounding := -infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further right of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further right of %1, maxfun limit exceeded (see ?dsolve,maxfun for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further right of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further right of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif _dat[4][9] = 6 then error "cannot evaluate the solution further right of %1, cannot downgrade delay storage for problems with delay derivative order > 1, try increasing delaypts", evalf[8](_val) elif _dat[4][9] = 10 then error "cannot evaluate the solution further right of %1, interrupt requested", evalf[8](_val) elif 100 < _dat[4][9] then if _dat[4][9]-100 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further right of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-100, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further right of %1", evalf[8](_val) end if elif _i = 2 and _xout < _val then Rounding := infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further left of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further left of %1, maxfun limit exceeded (see ?dsolve,maxfun for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further left of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further left of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif _dat[4][9] = 6 then error "cannot evaluate the solution further left of %1, cannot downgrade delay storage for problems with delay derivative order > 1, try increasing delaypts", evalf[8](_val) elif _dat[4][9] = 10 then error "cannot evaluate the solution further right of %1, interrupt requested", evalf[8](_val) elif 100 < _dat[4][9] then if _dat[4][9]-100 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further left of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-100, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further left of %1", evalf[8](_val) end if end if; if _EnvInFsolve = true then _dig := _dat[4][26]; if type(_EnvDSNumericSaveDigits, 'posint') then _dat[4][26] := _EnvDSNumericSaveDigits else _dat[4][26] := Digits end if; _Env_dsolve_SC_native := true; if _dat[4][25] = 1 then _i := 1; _dat[4][25] := 2 else _i := _dat[4][25] end if; _val := `dsolve/numeric/SC/IVPval`(_dat, _xout, _src); _dat[4][25] := _i; _dat[4][26] := _dig; [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] else Digits := _dat[4][26]; _val := `dsolve/numeric/SC/IVPval`(eval(_dat, 2), _xout, _src); [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] end if end proc, (2) = Array(0..0, {}), (3) = [z, a3(z)], (4) = []}); _vars := _dat[3]; _pars := map(rhs, _dat[4]); _n := nops(_vars)-1; _solnproc := _dat[1]; if not type(_xout, 'numeric') then if member(x_rkf45, ["start", 'start', "method", 'method', "left", 'left', "right", 'right', "leftdata", "rightdata", "enginedata", "eventstop", 'eventstop', "eventclear", 'eventclear', "eventstatus", 'eventstatus', "eventcount", 'eventcount', "laxtol", 'laxtol', "numfun", 'numfun', NULL]) then _res := _solnproc(convert(x_rkf45, 'string')); if 1 < nops([_res]) then return _res elif type(_res, 'array') then return eval(_res, 1) elif _res <> "procname" then return _res end if elif member(x_rkf45, ["last", 'last', "initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(x_rkf45, 'string'); _res := _solnproc(_xout); if _xout = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] end if elif type(_xout, `=`) and member(lhs(_xout), ["initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(lhs(x_rkf45), 'string') = rhs(x_rkf45); if type(rhs(_xout), 'list') then _res := _solnproc(_xout) else error "initial and/or parameter values must be specified in a list" end if; if lhs(_xout) = "initial" then return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] elif lhs(_xout) = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["eventdisable", 'eventdisable', "eventenable", 'eventenable', "eventfired", 'eventfired', "direction", 'direction', NULL]) then return _solnproc(convert(lhs(x_rkf45), 'string') = rhs(x_rkf45)) elif _xout = "solnprocedure" then return eval(_solnproc) elif _xout = "sysvars" then return _vars end if; if procname <> unknown then return ('procname')(x_rkf45) else _ndsol := 1; _ndsol := _ndsol; _ndsol := pointto(_dat[2][0]); return ('_ndsol')(x_rkf45) end if end if; try _res := _solnproc(_xout); [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] catch: error  end try end proc

p1 := plots:-odeplot(dsol, gridlines=false);

 

 

Maple's symbolic solution:

dsolve({de, ic}) assuming positive;
eval(eval(a3(z), %), {params});
p2 := plot(%, z=0..1, gridlines=false);

a3(z) = -JacobiSN(z*K*a10, a20/a10)*a20

-2.34*JacobiSN(5.2029*z, 1.902439024)

 

 

 

 

Let's plot the numeric and symbolic solutions together.

The numeric and symbolic solutions agree up to z=0.2.  Beyond that

the solution of the ODE is non-unique -- the numeric solution remains

constant, while the symbolic solution oscillates.  Both are true solutios of the ODE.

 

EDIT: Oops!  I take that back.  Both solutions are correct up to z=0.2.  Beyond that the numeric

solution is correct but the symbolic solution is not, since according to the ODE,

the derivative of the solution should be less than or equal to zero!

plots:-display([p1,p2], color=[red,blue]);

 

 

 

 

Mathematica's solution(?) does not agree with the numeric solution.

MM := a3(z) = -JacobiSN(z*a10*K, a20^2/a10^2)*a20;
eval(eval(a3(z), %), {params});
plot(%, z=0..1, gridlines=false):
plots:-display([p1, %], color=[red,blue]);

a3(z) = -JacobiSN(z*K*a10, a20^2/a10^2)*a20

-2.34*JacobiSN(5.2029*z, 3.619274242)

 

 
 

Download mw.mw

 

This worksheet shows how to plot those curves.  These do not agree with the picture that you have shown.  Perhaps the picture corresponds to a different choice of parameters.

restart;

with(plots):

eq1 := M^2*(1-sqrt(1-2*x/M**2))+2*f/(3*q-1)*(1-(1+(q-1)*x)^((3*q-1)/(2*q-2)))+2*(1-f)/(b*(3*q-1))*(1-(1+b*(q-1)*x)^((3*q-1)/(2*q-2)))=0;

M^2*(1-(1-2*x/M^2)^(1/2))+2*f*(1-(1+(q-1)*x)^((3*q-1)/(2*q-2)))/(3*q-1)+2*(1-f)*(1-(1+b*(q-1)*x)^((3*q-1)/(2*q-2)))/(b*(3*q-1)) = 0

eq2 := 1/sqrt(1-2*x/M^2)-f*(1+(q-1)*x)^((q+1)/(2*q-2))/(q-1)-(1-f)*(1+b*(q-1)*x)^((q+1)/(2*q-2))/(b*(q-1))=0;

1/(1-2*x/M^2)^(1/2)-f*(1+(q-1)*x)^((q+1)/(2*q-2))/(q-1)-(1-f)*(1+b*(q-1)*x)^((q+1)/(2*q-2))/(b*(q-1)) = 0

sys := eval([eq1,eq2], [b=0.2,q=0.3,M=1.73583]);

[3.013105789-3.013105789*(1-.6637669368*x)^(1/2)-0.2e2*f*(1-(1-.7*x)^0.7142857143e-1)-100.0000000*(1-f)*(1-(1-.14*x)^0.7142857143e-1) = 0, 1/(1-.6637669368*x)^(1/2)+1.428571429*f/(1-.7*x)^.9285714286+7.142857143*(1-f)/(1-.14*x)^.9285714286 = 0]

fsolve(sys);
p1 := pointplot(eval([x,f], %), symbol=circle, symbolsize=25, color=black):

{f = 1.424999999, x = -0.3290821902e-8}

p2 := implicitplot(sys, x=-4..4, f=-4..4, color=[red,blue],
  axes=boxed, numpoints=10000, legend=['eq1','eq2']):

display([p1,p2]);

 

The circle marks the solution of the system {eq1, eq2}.

 

Download mw.mw

 

I think the proper way to doing this is to work out the 2D to 2D transformation that deforms your equirectangular projection (I will refer to is as "the picture") onto the final result, without going through the intermediate 3D representation.

The following worksheet can serve as a starting point.  Let 0 < s < 2*Pi and -Pi/2 < t < Pi/.2 be the horizontal and vertical coordinates of the picture.  The mapping
(s, t) -> [cos(t)*cos(s), cos(t)*sin(s), sin(t)]
maps the picture into the sphere in 3D.  This is shown in plot p1.

The mapping
(s, t) -> [sqrt(2*(1+sin(t)))*cos(s), sqrt(2*(1+sin(t)))*sin(s)]
(which is 2D to 2D) maps the picture onto the desired Lambert projection.  This is shown in plot p2. (Well, actually in plot p2 I have embedded the result into 3D in order to later form a composite plot, but the embedded plot is inherently 2D.)

I think it is possible, although I haven't done this myself since it is late at night, to go from the 2D picture to the 3D sphere, rotate the sphere as needed, and then apply the Lambert transform, and figure out the overall map from 2D to 2D.

restart;

p1 := plot3d([cos(t)*cos(s), cos(t)*sin(s), sin(t)],
    s=0..2*Pi, t=-Pi/2..Pi/2,
    image="earth.jpg",
    labels=[x,y,z], size=[300,300]):

p2 := plot3d([sqrt(2*(1+sin(t)))*cos(s), sqrt(2*(1+sin(t)))*sin(s), -2],
    s=0..2*Pi, t=-Pi/2..Pi/2,
    image="earth.jpg", size=[300,300]):

plots:-display([p1,p2],
    scaling=constrained, orientation=[145,72,0],
    axes=none);

 

Download lambert-projection.mw

 

You say "after solving..." but you haven't asked Maple to solve the equation.  The solution u:=... that you have entered manually is incorrect.  If you insist on entering your own solution, then apply the quadratic formula with a little bit more care.  Alternatively, ask Maple to produce the solution for you.

 

See if this is useful.

 Download mw2.mw 

What you are asking is a job for your operating system, not Maple.

Install fswatch which is available for Linux, Mac, and Windows. Run it in a terminal and watch its notifications.  Then do what needs to be done in Maple.

 

 

I don't know how to do that with the tools provided in the VariationalCalculus package, but this can be done with bare hands with the help of the extended diff operator from the Physics package.  Have a look at this worksheet:   mw.mw

 

restart;

with(plots):

with(plottools):

el := x^2/5^2 + y^2/3^2 + z^2/2^2 = 1;

(1/25)*x^2+(1/9)*y^2+(1/4)*z^2 = 1

sp := (x-a)^2 + (y-1/2)^2 + (z-1/2)^2 = 1/2^2;

(x-a)^2+(y-1/2)^2+(z-1/2)^2 = 1/4

Normals to the ellipsoid and sphere at the point of tangency should be collinear.  This gives us three equations.

<diff(lhs(el),x), diff(lhs(el),y), diff(lhs(el),z)>:  # normal to the ellipoid
<diff(lhs(sp),x), diff(lhs(sp),y), diff(lhs(sp),z)>:  # normal to the sphere
%% =~ lambda*%:
eqs := convert(%, list)[];

(2/25)*x = lambda*(2*x-2*a), (2/9)*y = lambda*(2*y-1), (1/2)*z = lambda*(2*z-1)

The point of tangency lies on both the ellipsoid and the sphere.  That gives us two more equations.

sys := eqs, el, sp;

(2/25)*x = lambda*(2*x-2*a), (2/9)*y = lambda*(2*y-1), (1/2)*z = lambda*(2*z-1), (1/25)*x^2+(1/9)*y^2+(1/4)*z^2 = 1, (x-a)^2+(y-1/2)^2+(z-1/2)^2 = 1/4

Solve five equations in five unknowns:

sol := fsolve({sys}, {x,y,z,lambda,a}, a=0..5);

{a = 4.067469414, lambda = .5786614325, x = 4.369512157, y = .6188226230, z = .8803306006}

Let's plot the result.  Here is a plot of the ellipsoid.

EL := display(scale(sphere(1), 5, 3, 2), style=wireframe):

And here is a plot of the sphere.

SP := display(sphere(eval([a,1/2,1/2], sol), 1/2), style=surface, color=red):

And this is the two together.

display([EL, SP], scaling=constrained, style=surface);


 

Download mw.mw

 

It this, and similar problems, look for the equilibria first.  That tells you where the interesting things happen.  In your case, the equilibria are at y=0 and y=1/9=0.111.  Therefore it makes sense to limit the y direction to the range 0 to 0.2.  Negative y values are not relevant to this problem since populations cannot be negative.  Negative time values are also of no interest since we are interested in predicting the future based on what we have now.  These considerations limit the plotting region to t > 0 and 0 < y < 0.2.  The upper limit for t is determined by trial-and-error through the expectation that the solution should converge to the stable equilibrium point.

I have modified your worksheet to account for those comments.  Here is what we get:

Worksheet: mw.mw

 

In Linux, one normally starts Maple through the command

maple -x &

In cases where the java memory is apt to be exhausted (often due to an extensive animation), one can request an increased  Java heap by changing that to

maple -x -j 4096 &

I think that option is undocumented.   The default value of the Java heap is 512.

That's how it works in Linux.  There may be similar hooks in other operating systems.

 

If you want insulated ends, you need to supply Neumann, not Dirichlet, conditions.  I have made that change in the worksheet below.

restart;

pde := diff(u(x,t),t) = a^2*diff(u(x,t),x,x);

diff(u(x, t), t) = a^2*(diff(diff(u(x, t), x), x))

ibc := D[1](u)(0,t)=0,  D[1](u)(L,t)=0, u(x,0)=x*(L-x);

(D[1](u))(0, t) = 0, (D[1](u))(L, t) = 0, u(x, 0) = x*(L-x)

%pdsolve(pde, {ibc}, numeric):
eval(%, {a=1, L=1}):  # set the parameter values
pdsol := value(%);

_m139844871356224

pdsol:-animate(t=0..0.3, frames=40);


 

Download mw.mw

Added later

Accuracy issues

Looking a bit more closely to the solution presented above, I see some disconcerting issues.  We know that insulated boundary conditions imply that the heat equation preserves the average of the solution.  Since the initial condition is x*(L-x), the average is L^2/6.  Therefore the solution should approach the constant value L^2/6.  In our case L=1, therefore that constant should be 1/6 which is approximately 0.1667.  In the animation shown above the solution converges to something like 0.12 which is very far from the target.

We may increase pdsolve's accuracy by reducing the spacestep parameter whose default value is L/20.  To get a limit which is reasonably close to 0.1667, we need to take spacestep=L/1000 (see the demo below) which is a very inefficient way of solving a PDE.  There may be options to pdsolve to obtain the solution more efficiently but I can't tell.  Perhaps someone else who is more knowledgeable about pdsolve's options can chime in.

Something else that I must point out is that the wavy oscillations in the solution curves produced by the default spacestep is a numerical artifact.  Note that those oscillations  are not present in the more accurate solutions.

restart;

pde := diff(u(x,t),t) = a^2*diff(u(x,t),x,x);

diff(u(x, t), t) = a^2*(diff(diff(u(x, t), x), x))

ibc := D[1](u)(0,t)=0,  D[1](u)(L,t)=0, u(x,0)=x*(L-x);

(D[1](u))(0, t) = 0, (D[1](u))(L, t) = 0, u(x, 0) = x*(L-x)

 

spacestep=1/20 (the default)

 

%pdsolve(pde, {ibc}, numeric, spacestep=1/20):
eval(%, {a=1, L=1}):  # define parameter values
pdsol := value(%):

pdsol:-animate([[1/6, color=blue], [u(x,t), color=red]], t=0..0.3, frames=40);

 

spacestep=1/100

 

%pdsolve(pde, {ibc}, numeric, spacestep=1/100):
eval(%, {a=1, L=1}):  # define parameter values
pdsol := value(%):

pdsol:-animate([[1/6, color=blue], [u(x,t), color=red]], t=0..0.3, frames=40);

 

spacestep=1/1000

 

%pdsolve(pde, {ibc}, numeric, spacestep=1/1000):
eval(%, {a=1, L=1}):  # define parameter values
pdsol := value(%):

pdsol:-animate([[1/6, color=blue], [u(x,t), color=red]], t=0..0.3, frames=40);

 

Download mw2.mw

 

restart;

de := diff(y(x),x,x) + a*y(x) = 0;

diff(diff(y(x), x), x)+a*y(x) = 0

bc_base := y(0)=0, y(L)=0;
bc_extra := D(y)(0)=1;    # extra boundary condition to avoid the trivial solution
bc := bc_base, bc_extra;

y(0) = 0, y(L) = 0

(D(y))(0) = 1

y(0) = 0, y(L) = 0, (D(y))(0) = 1

dsol := dsolve({de,bc}, {y,a});

{a = Pi^2*(2*_Z1+_B1)^2/L^2, y(x) = L*sin((Pi^2*(2*_Z1+_B1)^2/L^2)^(1/2)*x)/(Pi*(2*_Z1+_B1))}

about(_Z1);

Originally _Z1, renamed _Z1~:
  is assumed to be: integer

about(_B1);

Originally _B1, renamed _B1~:

  is assumed to be: OrProp(0,1)

A particular solution:

eval(dsol, {_Z1=5, _B1=0}):
simplify(%)  assuming L>0;  # solution
eval([de,bc], %);           # verify solution

{a = 100*Pi^2/L^2, y(x) = (1/10)*L*sin(10*Pi*x/L)/Pi}

[0 = 0, y(0) = 0, y(L) = 0, (D(y))(0) = 1]

Another particular solution:

eval(dsol, {_Z1=5, _B1=1}):
simplify(%)  assuming L>0;  # solution
eval([de,bc], %);           # verify solution

{a = 121*Pi^2/L^2, y(x) = (1/11)*L*sin(11*Pi*x/L)/Pi}

[0 = 0, y(0) = 0, y(L) = 0, (D(y))(0) = 1]

Solving with Neumann boundary condition on the left end

bc_base := D(y)(0)=0, y(L)=0;
bc_extra := y(0)=1;    # extra boundary condition to avoid the trivial solution
bc := bc_base, bc_extra;

(D(y))(0) = 0, y(L) = 0

y(0) = 1

(D(y))(0) = 0, y(L) = 0, y(0) = 1

dsol := dsolve({de,bc}, {y,a});

{a = (1/4)*Pi^2*(1+2*_Z2)^2/L^2, y(x) = cos((1/4)*4^(1/2)*(Pi^2*(1+2*_Z2)^2/L^2)^(1/2)*x)}

dsol := simplify(dsol) assuming L > 0;

{a = (1/4)*Pi^2*(1+2*_Z2)^2/L^2, y(x) = cos((1/2)*Pi*signum(1/2+_Z2)*(1+2*_Z2)*x/L)}

A particular solution:

eval(dsol, {_Z2=5}):
simplify(%)  assuming L>0;  # solution
eval([de,bc], %);           # verify solution

{a = (121/4)*Pi^2/L^2, y(x) = cos((11/2)*Pi*x/L)}

[0 = 0, (D(y))(0) = 0, y(L) = 0, y(0) = 1]

Another particular solution:

eval(dsol, {_Z2=-5}):
simplify(%)  assuming L>0;  # solution
eval([de,bc], %);           # verify solution

{a = (81/4)*Pi^2/L^2, y(x) = cos((9/2)*Pi*x/L)}

[0 = 0, (D(y))(0) = 0, y(L) = 0, y(0) = 1]

 

 
 

Download mw.mw

 

Note added later

The solutions shown above are correct but they can be simplified (by hand, not Maple!)  See the worksheet below for the simplification.

Download mw2.mw

 

A field plot for a nonautonomous system doesn't make much sense.  It is like asking for a picture of a stormy sea.  You may take a snapshot at one moment, but that picture will change at the next moment—there is no one picture.

It is possible, however, to convert a nonautonomous ODE to an autonomous one at the expense of introducing an extra dimension.  Specifically, one introduces a new unknown, let's say z(t), through the equation dz/dt=1, z(0)=0, which is equivalent to z(t)=t.  Then we replace t by z(t) on the right-hand side of the equation,.

Your equation is of the second order.  We convert it to a first order system, and then append the equation dz/dt=1 and thus obtain an autonomous system of 3 equations and then produce the corresponding 3D field plot.

See the details in the worksheet.


Download mw.mw

PS: Your title says "solve" but the code fragment that you have shown attempts to do a field plot which is something quite different.  In what I have written above, I have addressed the field plot issue.  If yiou are interested in a solution, then you will need to supply an initial condition.

 

I will show the solution of your homework problem's first part which can be done in Maple.  The rest, which calls for a straightforward mathematical argument, will have to be done by hand.  I have provided an outline below.

restart;
eq := diff(z(t), t) = (a + b*I)*z(t) + G(abs(z(t))^2)*z(t);
Eq := eval(eq, z(t)=r(t)*exp(theta(t)*I));
de1 := evalc(Re(Eq));
de2 := evalc(Im(Eq));

Then:

  1. Solve {de1, de2} as an algebraic (not differential) system of two linear equations in the two unknowns {dr/dt, dtheta/dt}.  (This step can be done in Maple.)
  2. Apply the assumptions on a, b, and G to conclude that the origin is the only the equilibrium.
  3. Show that the origin repels orbits.
  4. Show that the origin attracts far-away orbits.
  5. Apply Poincare-Bendixon to conclude that there exists a limit cycle.

 

First 21 22 23 24 25 26 27 Last Page 23 of 58