499 Reputation

16 Badges

11 years, 42 days

MaplePrimes Activity

These are answers submitted by Alger

You can write a procedure to automatise your calculations as:

restart:Dif:=proc(f1,f2,x,q,n); print(diff(diff(f1,x)+f1,x)); diff((diff(f2,q)+diff(f1,x,x)*diff(f2,x)),q$n); end proc;




I hope this is helpful

restart:fsolve((500*.87)*(1-(1/x)^.2385)-(288*(x^.3174-1))/(.85), x);


restart: y:=false: evalhf(y); y:=true: evalhf(y); x:=3: evalhf(x<2); evalhf(x>2);

see ? evalhf

Perhaps, you mean a think like this:

restart: with(Student[Calculus1]):ode := diff(y(x),x,x) = 2*y(x) + 1;

ics := y(0)=1, D(y)(0)=0;


Tangent(rhs(%), -1.5, view = [-2..1, DEFAULT], output = plot);

This occur when using a variable w and indexing the same variable.

Example: w and w[h]. theta and theta[h].

You should use for w[h] another variable like ww[h] and for theta[h] another variable like phi[h].

restart: conv:= unapply(int(x(tau)*h(t-tau),tau),x,h,t,tau);
 Change(Y[5],{sigma1=z1,sigma5=z1+z2}); #In Y[5], you have only sigma1 and sigma5 to be changed´╗┐

You should solve your system with:

restart: eq1:=y=2*x^2-5*x+3: eq2:=y=x^3+4*x-3: solve({eq1,eq2},{x,y}); allvalues(%);

You should read the file ReadMe.txt in the folder Structural Mechnics

In the ReadMe.txt, you can find there is two ways to de what you want

In my opinion, the first way is clearing variables:

restart: assume(x,real): y:=x; x:='x': y:=x;

Or using assuming

restart: y:=x assuming x::real; # compute the value of an expression under assumption

evalf(exp(1)); #work


If T negatif

limit(exp(x/T),x=infinity) assuming T<0;

restart:with(plots):F1:=plot(x^2, x=0..1, y=-1..1, color="NavyBlue", thickness=3, filled=[color="Blue", transparency=0.5]):G1:=plot(x^3, x=0..1, y=-1..1, color="NavyBlue", thickness=3, filled=[color="White", transparency=0.5]): F2:=plot(x^2, x=-1..0, y=-1..1, color="NavyBlue", thickness=3, filled=[color="Blue", transparency=0.5]):G2:=plot(x^3, x=-1..0, y=-1..1, color="NavyBlue", thickness=3, filled=[color="Blue", transparency=0.5]):
> display({F1,F2,G1,G2});


565 mod 5656;


56 mod 565;


Then x=565 and 56

with(plots):F:=plot(x^2, x=0..1, y=0..1, color="NavyBlue", thickness=3, filled=[color="Black", transparency=0.5]):
> G:=plot(x^3, x=0..1, y=0..1, color="NavyBlue", thickness=3, filled=[color="White", transparency=0.5]):
> display({F, G});

restart: p:=x->piecewise(x<2,0,x>=2,x-2);´╗┐



F := proc (x) -int(p(x), x); end proc;




5 6 7 8 9 Page 7 of 9