## 1545 Reputation

19 years, 198 days

## Replace....

```
H := (-lambda + sqrt(-Omega)*{tan(sqrt(-Omega)*xi) + sec(sqrt(-Omega)*xi)})/(2*v - 2);
#should be
H := (-lambda + sqrt(-Omega)*(tan(sqrt(-Omega)*xi) + sec(sqrt(-Omega)*xi)))/(2*v - 2);
```

Thumb if You like.

## Name space....

Replace output='Q' with output=':-Q'.

Thumb if You like.

## Appendage....

This procedure lets you append your parameters.

```F := proc (f)
local F, A;
subs('F' = f, 'A' = args[2 .. -1], () -> F(A, args))
end proc;

F(f, 3, 4); F(f, 3, 4)(z);
F(f, 3); F(f, 3)(y, z);
```

Thumb if You like.

## Unevaluate?...

Do you mean like this: 'sin(0)' ?

## Solve variables....

You must introduce a coordinate first.

```A := diff(phi(((8*R^(3/2) - W)*sqrt(2))/(24*sqrt(M))), `\$`(W, 2)) = lambda*phi(((8*R^(3/2) - W)*sqrt(2))/(24*sqrt(M)));
map2(op, 1, indets(A, function));
S := % =~ ([x || (`\$`(1 .. nops(%)))]);
subs(S, A);
dsolve(%);
subs(map(rhs = lhs, S), %);
```

Thumb if You like.

## ?plottools[transform] ?plottools[transla...

Example:
plottools[transform]((x, y) -> [x+1, y+1])(YourPlotGoesHere);
#Edit
display(plottools[translate](YourPlotGoesHere, 1, 1 ), V);

See all of :
?plottools[transform]
?plottools[translate]
?plottools[rotate]
?plottools[reflect]
?plottools[scale]

Thumb if You like.

## Typo?...

Do you mean :
plot3d(U, x = -10 .. 10, t = -10 .. 10);
#or
plot3d(U, x = -10 .. 10, t = -10 .. 10, view=[DEFAULT, DEFAULT, -10..10]);

## Coeffs....

I do not understand why you expect the coefficients to ordered in any way. Use this:

```f := (x, y) -> (295849/5841396)*x^2-(29441/324522)*y*x+(33995/216348)*y^2-(5989/14751)*x+(3635/4917)*y+1;
F := proc(P :: polynom, v :: set, V :: list, N :: list)
local C, M, i, j;
C := coeffs(f(x, y), v, M);
seq(`if`(member(op(i, [M]), N, 'j'), op(j, V) = op(i, [C]), NULL),
i = 1 .. nops([M]));
end proc;
F(f(x,y), {x,y}, [A, B, C, D, E, F], [x^2, y*x, y^2, x, y, 1]);
F(f(x,y), {x,y}, [A, C], [x^2, y^2]);
```

Thumb if You like.

## Simplify....

`@`(Q -> simplify(Q, [x = 2*Pi*w]), simplify, Q -> simplify(Q, [2*Pi*w = x]))( sin(4*Pi*w)/sin(2*Pi*w) );
#interestingly
sin(4*x)/sin(2*x);
simplify(%);

Thumb if You like.

## Parse the whole expression....

This code does it:

abCaseSet := {[`0<a<1`, `0<b<1`], [`0<a<1`, `b=-1`], [`0<a<1`, `b=0`], [`0<a<1`, `b=1`], [`0<a<1`, `1<b<&infin;`], [`0<a<1`, -`1<b<0`], [`0<a<1`, -`&infin;<b<-1`], [`a=-1`, `0<b<1`], [`a=-1`, `b=-1`], [`a=-1`, `b=0`], [`a=-1`, `b=1`], [`a=-1`, `1<b<&infin;`], [`a=-1`, -`1<b<0`], [`a=-1`, -`&infin;<b<-1`], [`a=0`, `0<b<1`], [`a=0`, `b=-1`], [`a=0`, `b=0`], [`a=0`, `b=1`], [`a=0`, `1<b<&infin;`], [`a=0`, -`1<b<0`], [`a=0`, -`&infin;<b<-1`], [`a=1`, `0<b<1`], [`a=1`, `b=-1`], [`a=1`, `b=0`], [`a=1`, `b=1`], [`a=1`, `1<b<&infin;`], [`a=1`, -`1<b<0`], [`a=1`, -`&infin;<b<-1`], [`1<a<&infin;`, `0<b<1`], [`1<a<&infin;`, `b=-1`], [`1<a<&infin;`, `b=0`], [`1<a<&infin;`, `b=1`], [`1<a<&infin;`, `1<b<&infin;`], [`1<a<&infin;`, -`1<b<0`], [`1<a<&infin;`, -`&infin;<b<-1`], [-`1<a<0`, `0<b<1`], [-`1<a<0`, `b=-1`], [-`1<a<0`, `b=0`], [-`1<a<0`, `b=1`], [-`1<a<0`, `1<b<&infin;`], [-`1<a<0`, -`1<b<0`], [-`1<a<0`, -`&infin;<b<-1`], [-`&infin;<a<-1`, `0<b<1`], [-`&infin;<a<-1`, `b=-1`], [-`&infin;<a<-1`, `b=0`], [-`&infin;<a<-1`, `b=1`], [-`&infin;<a<-1`, `1<b<&infin;`], [-`&infin;<a<-1`, -`1<b<0`], [-`&infin;<a<-1`, -`&infin;<b<-1`]};

map([proc(L)
local i;
seq(
(proc(x, f, y)
if member(f, {`<`, `<=`, `=`, `>`, `>=`}) then f(x, y) end if;
end proc)(op(i - 1 .. i + 1, L)), i = 2 .. nops(L) - 1)
end proc], parse(
(proc(X)
local L, S;
S := convert(X, string);
for L in [["`", ""], ["&infin;", "infinity"], ["<=", ", `<=`, "],
["<", ", `<`, "], [">=", ", `>=`, "], [">", ", `>`, "], ["=", ", `=`, "]
] do S := StringTools:-SubstituteAll(S, op(L))
end do
end proc)(abCaseSet)));

## Use NULL....

@Luca3544 Are you trying to make your procedure to do a print out of a search? If so then attach "NULL;" as last statement to the procedure code.

M := proc(a)
local Grundstof, c;
description "Side 302, 303";
c := convert(a, string);
Grundstof := [(1.0079*g)/(mol) + "H", (4.0026*g)/(mol) + "He",
(6.941*g)/(mol) + "Li", (9.0122*g)/(mol) + "Be", (g)/(mol),
(10.811*g)/(mol) + "B", (12.0107*g)/(mol) + "C", (14.0067*g)/(mol) + "N",
(15.9994*g)/(mol) + "O", (18.9984*g)/(mol) + "F", (22.990*g)/(mol) + "Na",
(24.305*g)/(mol) + "Mg"];
# (proc(E, n, s) if has(E, s) then print(E); n fi end)~(Grundstof, [\$1..nops(Grundstof)], c);
# or
map(proc(n, c) if has(args) then print(n) fi end, Grundstof, c);
NULL;
end proc;

## Include the index....

That should be "assuming 0 < k[2];"

I do not believe you can define an assumption like "for all i k[i] is positive".

## See ?unapply...

f1 := unapply(diff(g1, x), x);

or

gf := unapply(g1, x);
f1 := D(gf);

Thumb if You like.

## Geometry module....

This should be:

geometry:-RegularPolygon(gon,5,geometry:-point(o,1,1),2);
#or
use geometry in RegularPolygon(gon,5,point(o,1,1),2) end use;

Thumb if You like.

## Some coding issues....

Deleted.

 First 10 11 12 13 14 15 16 Last Page 12 of 21
﻿