Christian Wolinski

MaplePrimes Activity


These are answers submitted by Christian Wolinski

Also additional assumptions should use command additionally not assume. Using assume again on the same variable reinitializes all assumptions on it (and related variables I believe).

ode := diff(y(x), x) = sin(y(x))+1;
ic := y(0) = Pi;
Order := 40;
sol := dsolve([ode, ic], y(x), series);
ser1 := gfun[seriestorec](subs(sol, y(x)), a(n));
diffeq1 := gfun[rectodiffeq](ser1[1], a(n), y(x));
dsol1 := dsolve(diffeq1, y(x));

This should help:

indets(cS(a)(b)(c), specfunc(anything, cS));

Maple does not resolve types in the 0th operand.

Replace
Int(unapply(eq7,t),-25..25,method=_d01ajc)
with
Int(eq7,t=-25..25,method=_d01ajc)

Instead of ifactor use ifactors. Much easier to work with.

y = -1/2 .. 3, z = -3 .. 3, x = 0 .. 1;
u = 2*x*y, v = 2*x*z;
u = (minimize .. maximize)(2*x*y, x = 0 .. 1, y = -1/2 .. 3);
v = (minimize .. maximize)(2*x*z, x = 0 .. 1, z = -3 .. 3);
u = -1 .. 6, v = -6 .. 6, x = 0 .. 1;
uvEQ := collect(combine(subs(solve({u = 2*x*y, v =  2*x*z}, {y, z}), expand([eq1, eq2]*x^2*300))), [exp, sin, cos]);

Digits := 16;
PLT1:=plots[intersectplot](
op(map(E->map(evalf, surface(E, u = -1 .. 6, v = -6 .. 6, x = 0 .. 1)), uvEQ)),
maxlev = 5, maxtet=100000, grid = [31, 61, 11], thickness = 3, transparency = 0.3):
print(PLT1);

subs(solve({u = 2*x*y, v = 2*x*z}, {y, z}), [y, z, x]);
F1 := unapply(%, [u, v, x]);
plots[display](plottools[transform](F1)(PLT1), view=[ -1/2 .. 3,  -3 .. 3,  0 .. 1]);

 

If you'd like a plot of the solution you can use:

Digits := 16;
plots[intersectplot](
map(evalf, surface(eq1, y = -1/2 .. 3, z = -3 .. 3, x = 0 .. 1)),
map(evalf, surface(eq2, y = -1/2 .. 3, z = -3 .. 3, x = 0 .. 1)),
maxlev = 5, grid = [31, 61, 11], thickness = 3, transparency = 0.3);

You could use this, if you mean exact match.

ArrayTools:-IsZero(A) and LinearAlgebra:-Dimensions(A)=(4,4);


Also see ?ArrayTools:-IsEqual

expand(rel(n+1));

This works:

restart;
expr := -(r0+Delta_r)^2*(46*r0-41*Delta_r)*r0^5;
subsop(2=b,3=c,4=d, 1=a, expr);


Reasoning is obvious. subsop(1=a, expr) replaces the constant of multiplication. Operand 1 (always the constant) stops being a constant, so a new expression with 2 elements is formed: a*(rest of expression). There is no operand 3 and 4. Your subsop worked as intended.

Try this code, if you have the newer Maple version (looks like you're trying to use old Maple).

y:=sqrt((x^2*(x^2-4))/(x^2-1));
solve(evalc(Im(y)), x);
F := [Minimize = minimize, Maximize = maximize];
G := 'simplify(evalc(Re(y)))';
F(`assuming`([G], [-1 <= x, x <= 1]), x = -1 .. 1, location);
F(`assuming`([G], [2 <= x]), x = 2 .. infinity, location);
F(`assuming`([G], [x <= -2]), x = -infinity .. -2, location);

 

Simply submitting the relevant query to msolve will do.

{x = 26730899*a[2]+1162213*a[5]+507520*a[9]+808519*a[4]+757969*a[8]+252655*a[3]+12167*a[1]+529*a[7], y = 8046000599*a[2]+748465172*a[5]+3822524979*a[9]+8821208032*a[4]+588083951*a[8]+5934310109*a[3]+8346050986*a[1]+7538374844*a[7]+4385029649*a[6]};

{a[5] = 0, a[2] = 0, a[3] = 0, a[4] = 0, a[8] = 0, a[1] = 0, a[6] = 6880584, a[9] = 4174, a[7] = -4004513};

Do you know your expression is annihilated by P:

P := 1+256*u*(256*u^3-135)*lambda^4+(16384*u^3+1728)*lambda^3+1536*lambda^2*u^2+64*lambda*u;
`@`(evala, Normal, subs)(lambda = expr, P);

 

I would guess you are meant to supply irreducible forms. You can always try this:

(degree, factor)(evala(Norm(lambda-bSol[1])));
Digits:=150;
lcm(op(map(p->PolynomialTools:-MinimalPolynomial(evalf(p), x, 36), bSol)));


Or start with this:

PA := evala(Algfield(bSol)):
PA[3];

 

 

If you map objective via exp function the following works naturally:

Optimization:-Maximize(x[1]*x[2]*x[3], {0 <= x[1], 0 <= x[2], 0 <= x[3], x[1]+x[2] <= 1, x[1]+x[3] <= 2});

1 2 3 4 5 6 7 Last Page 2 of 22