Figo311

15 Reputation

2 Badges

6 years, 97 days

MaplePrimes Activity


These are questions asked by Figo311

Hi, I am new to maple, but I think that my question should be simple.

I have a matrix where each element is an expression. I want to compute the matrix for different constant and to save it without crushing the previous matrix. 

If the file that I joined, I have a first part where the constant are defined. In the second part the expression of the matrix is defined. Finally, I compute each matrix with different constant. Each results is called C_p0, C_s0, C_g0. When I called them back, only the last matrix computed remains.

I would like to be able to save each matrix to performed operation on them later.

Thank you. 

 

Forum_Question1.mw

Homogénéisation

 

restart; with(plots); with(DifferentialGeometry); with(LinearAlgebra); with(Physics)

  NULL

Paramètre des matériaux

 

p[p] := [34.68, 34.82]:
NULL

 

NULLNULL

Tenseurs Élémentaires

 

NULL

Tenseur de rigidité

 

V := 1/((1+upsilon[23])*(-2*upsilon[12]*upsilon[21]-upsilon[23]+1)); G[12] := E/(2*(1+upsilon[12])); C[11] := (-upsilon[23]^2+1)*V*E[1]; C[22] := (-upsilon[12]*upsilon[21]+1)*V*E[2]; C[12] := upsilon[21]*(1+upsilon[23])*V*E[2]; C[23] := (upsilon[12]*upsilon[21]+upsilon[23])*V*E[2]; C[44] := (1/2)*(-2*upsilon[12]*upsilon[21]-upsilon[23]+1)*V*E[2]; C[55] := E[6]; C[33] := C[22]; C[13] := C[12]; C[66] := C[55]; C[21] := C[12]; C[32] := C[23]; C[iso] := Matrix(6, 6, {(1, 1) = C[11], (1, 2) = C[12], (1, 3) = C[12], (1, 4) = 0, (1, 5) = 0, (1, 6) = 0, (2, 1) = C[21], (2, 2) = C[22], (2, 3) = C[23], (2, 4) = 0, (2, 5) = 0, (2, 6) = 0, (3, 1) = C[21], (3, 2) = C[32], (3, 3) = C[22], (3, 4) = 0, (3, 5) = 0, (3, 6) = 0, (4, 1) = 0, (4, 2) = 0, (4, 3) = 0, (4, 4) = C[44], (4, 5) = 0, (4, 6) = 0, (5, 1) = 0, (5, 2) = 0, (5, 3) = 0, (5, 4) = 0, (5, 5) = C[66], (5, 6) = 0, (6, 1) = 0, (6, 2) = 0, (6, 3) = 0, (6, 4) = 0, (6, 5) = 0, (6, 6) = C[66]})

Matrice de rigidité

 

upsilon[23] := upsilon[p]:

Matrix([[C[11], C[12], C[12], 0, 0, 0], [C[21], C[22], C[23], 0, 0, 0], [C[21], C[32], C[22], 0, 0, 0], [0, 0, 0, C[44], 0, 0], [0, 0, 0, 0, C[66], 0], [0, 0, 0, 0, 0, C[66]]])

(1.2.1.1.1)

upsilon[23] := upsilon[s]:

Matrix([[C[11], C[12], C[12], 0, 0, 0], [C[21], C[22], C[23], 0, 0, 0], [C[21], C[32], C[22], 0, 0, 0], [0, 0, 0, C[44], 0, 0], [0, 0, 0, 0, C[66], 0], [0, 0, 0, 0, 0, C[66]]])

(1.2.1.1.2)

upsilon[23] := upsilon[g]:

Matrix([[C[11], C[12], C[12], 0, 0, 0], [C[21], C[22], C[23], 0, 0, 0], [C[21], C[32], C[22], 0, 0, 0], [0, 0, 0, C[44], 0, 0], [0, 0, 0, 0, C[66], 0], [0, 0, 0, 0, 0, C[66]]])

(1.2.1.1.3)

``

C[p0];

Matrix([[C[11], C[12], C[12], 0, 0, 0], [C[21], C[22], C[23], 0, 0, 0], [C[21], C[32], C[22], 0, 0, 0], [0, 0, 0, C[44], 0, 0], [0, 0, 0, 0, C[66], 0], [0, 0, 0, 0, 0, C[66]]])

(1)

``

 

Page 1 of 1